冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共21页。试卷主要包含了下列各图中,和是对顶角的是,下列说法中,错误的是,有下列说法等内容,欢迎下载使用。
冀教版七年级数学下册第七章相交线与平行线同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°2、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等3、如图,若AB∥CD,CD∥EF,那么BCE=( )A.180°-2+1 B.180°-1-2 C.2=21 D.1+24、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )A.2cm B.小于2cm C.不大于2cm D.4cm5、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'6、下列各图中,和是对顶角的是( )A. B.C. D.7、下列说法中,错误的是( )A.两点之间线段最短B.若AC=BC,则点C是线段AB的中点C.过直线外一点有且只有一条直线与已知直线平行D.平面内过直线外一点有且只有一条直线与已知直线垂直8、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A.1 B.2 C.3 D.49、如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EFHC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①ADBC;②GK平分∠AGC;③∠DGH=37°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有( )A.4个 B.3个 C.2个 D.1个10、如图,直线AB与CD相交于点O,若,则等于( )A.40° B.60° C.70° D.80°第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、同一平面内,两条直线相交有__________个交点,两条直线相交的特殊位置关系是__________.2、如图,如果______,那么.3、如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要______米.4、按要求完成下列证明:如图,点,,分别是三角形的边,,上的点,,.求证:.证明:, ., . .5、如图,已知点B在线段CF上,AB∥CD,AD∥BC,DF交AB于点E,联结AF、CE,S△BCE:S△AEF的比值为___.三、解答题(5小题,每小题10分,共计50分)1、根据要求画图或作答:如图所示,已知A、B、C三点.(1)连结线段AB;(2)画直线AC和射线BC;(3)过点B画直线AC的垂线,垂足为点D,则点A到直线BD的距离是线段_______的长度.2、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数3、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:(1)如图a,在线段AB上找一点P,使PC+PD最小.(2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.(3)如图c,画线段CM∥AB.要求点M在格点上.4、已知在平面直角坐标系中的位置如图所示,其中每一个小方格都是边长为1个单位长度的正方形.(1)将先向左平移6个单位长度,再向下平移6个单位长度,得到,请在坐标系中作出;(2)直接写出四边形的面积.5、如图,已知在同一平面内的三点(1)作直线,射线,线段;(2)在直线上找一点,使线段的长最小,画出图形,并说明理由. -参考答案-一、单选题1、D【解析】【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,∴C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.2、D【解析】【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.3、A【解析】【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】∵AB∥CD,CD∥EF,∴∠1=∠BCD,∠ECD+∠2=180°,∴BCE=∠BCD+∠ECD=180°-2+1,故选A.【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.4、C【解析】【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,∴点到直线的距离不大于,故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.5、D【解析】【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.6、D【解析】【分析】由题意根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:根据对顶角的定义:中和顶点不在同一位置,不是对顶角;中和角度不同,不是对顶角;中和顶点不在同一位置,不是对顶角;中和是对顶角;故选:.【点睛】此题主要考查了对顶角,正确把握对顶角的定义是解题关键.7、B【解析】【分析】根据线段公理可判断A,根据点C与线段AB的位置关系可判断B,根据平行公理可判断C,根据垂线公理可判断D即可.【详解】A. 两点之间线段最短,正确,故选项A不合题意;B. 若AC=BC,点C在线段AB外和线段AB上两种情况,当点C在线段AB上时,则点C是线段AB的中点,当点C不在线段AB上,则点C不是线段AB中点,不正确,故选项B符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,正确,故选项C不合题意;D. 平面内过直线外一点有且只有一条直线与已知直线垂直,正确,故选项D不合题意.故选B.【点睛】本题考查基本事实即公理,和线段的中点,掌握基本事实即公理,和线段的中点是解题关键.8、A【解析】【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.9、B【解析】【分析】根据平行线的判定定理得到AD∥BC,故①正确;由平行线的性质得到∠AGK=∠CKG,等量代换得到∠AGK=∠CGK,求得GK平分∠AGC;故②正确;根据题意列方程得到∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,得到∠AGK=α+β,根据角平分线的定义即可得到结论.【详解】解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;∵∠FGA的余角比∠DGH大16°,∴90°-∠FGA-∠DGH=16°,∵∠FGA=∠DGH,∴90°-2∠FGA=16°,∴∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,∴∠AGK=α+β,∵GK平分∠AGC,∴∠CGK=∠AGK=α+β,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+α=β+α+β,∴β=18.5°,∴∠MGK=18.5°,故④错误,故选:B.【点睛】本题考查了平行线的判定和性质,角平分线的定义,对顶角性质,一元一次方程,正确的识别图形是解题的关键.10、A【解析】【分析】根据对顶角的性质,可得∠1的度数.【详解】解:由对顶角相等,得∠1=∠2,又∠1+∠2=80°,∴∠1=40°.故选:A.【点睛】本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.二、填空题1、 1 垂直【解析】略2、##∠ABC##∠CBA【解析】【分析】根据平行线的判定定理即可得到结论.【详解】解:,.故答案为.【点睛】本题考查了平行线的判定定理,熟练掌握同旁内角互补两直线平行是解题的关键.3、15【解析】【分析】根据平移的性质可得,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,计算即可得出答案.【详解】解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要 12+3=15(米).故答案为:15.【点睛】本题主要考查了平移现象,熟练应用平移的性质进行求解是解决本题的关键.4、,两直线平行,内错角相等;,等量代换;同位角相等,两直线平行【解析】【分析】由题意知由两直线平行,内错角相等可得,由,可知.【详解】解:证明: 两直线平行,内错角相等)(已知)(等量代换)(同位角相等,两直线平行)故答案为:,两直线平行,内错角相等;,等量代换;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定.解题的关键在于用角的数量关系判断两直线的位置关系.5、1【解析】【分析】连接BD,利用平行线间距离相等得到同底等高的三角形面积相等即可解答.【详解】解:连接BD,如下图所示:∵BC∥AD,∴S△AFD= S△ABD,∴S△AFD- S△AED= S△ABD- S△AED,即S△AEF= S△BED,∵AB∥CD,∴S△BED=S△BEC,∴S△AEF=S△BEC,∴S△BCE:S△AEF=1.故答案为:1.【点睛】本题以平行为背景考查了同底等高的三角形面积相等,找到要求的三角形有关的同(等)底或同(等)高是解题的关键.三、解答题1、(1)画图见解析;(2)画图见解析;(3)画图见解析,【解析】【分析】(1)连接即可;(2)过两点画直线即可,以为端点画射线即可;(3)利用三角尺过画的垂线,垂足为 可得 从而可得点A到直线BD的距离是垂线段的长度.【详解】解:(1)如图,线段AB即为所求作的线段,(2)如图,直线AC和射线BC即为所求作的直线与射线,(3)如图,BD即为所画的垂线,点A到直线BD的距离是线段的长度.故答案为:【点睛】本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.2、55°【解析】【分析】由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.【详解】解:∵∠AOD=70°,∴∠COB=∠AOD=70°,∵OE平分∠BOC,∴∠EOB=∠EOC=35°,∵∠FOE=90°,∴∠AOF=180°-∠EOB-∠FOE=55°.【点睛】本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.3、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.【详解】解:(1)如图a,点P即为所求;(2)如图b,点Q和线段CQ即为所求;(3)如图c,线段CM即为所求.【点睛】本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.4、 (1)见解析(2)54【解析】【分析】(1)分别作出点A、B、C平移后得到对应点,再顺次连接即可;(2)利用两个三角形的面积和计算即可.(1)解:如图所示,是所求作三角形;(2)解:;;四边形的面积为27+27=54.【点睛】本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的性质,会用面积和差计算面积.5、 (1)见解析(2)图见解析,理由:连结直线外一点与直线上各点的所有线段中,垂线段最短.【解析】【分析】(1)根据题意,结合直线、射线、线段的定义画图;(2)根据垂线段最短解题.(1)如图,直线,射线,线段就是所求作的图形;(2)如图,点M即为所求作的点.理由:连结直线外一点与直线上各点的所有线段中,垂线段最短.【点睛】本题考查基础作图—直线、射线、线段、垂线段等知识,是重要考点,掌握相关知识是解题关键.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共21页。试卷主要包含了下列语句正确的个数是,下列说法错误的是,如图,不能推出a∥b的条件是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题,共22页。试卷主要包含了下列说法中正确的有,下列命题中,是真命题的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后测评,共22页。试卷主要包含了如图,直线b等内容,欢迎下载使用。