初中冀教版第七章 相交线与平行线综合与测试测试题
展开冀教版七年级下册第七章相交线与平行线定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、已知直线mn,如图,下列哪条线段的长可以表示直线与之间的距离( )
A.只有 B.只有 C.和均可 D.和均可
2、如图,不能推出a∥b的条件是( )
A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°
3、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
4、如图,已知直线,相交于O,平分,,则的度数是( )
A. B. C. D.
5、如图,于O,直线CD经过O,,则的度数是( )
A. B. C. D.
6、如图,直线AB、CD相交于点O,OE平分∠AOD,若∠DOE=36°,则∠BOC的度数为( )
A.72° B.90° C.108° D.144°
7、如果存在一条直线将一个图形分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )
A. B.
C. D.
8、如果∠A的两边分别垂直于∠B的两边,那么∠A和∠B的数量关系是( )
A.相等 B.互余或互补 C.互补 D.相等或互补
9、如图,将木条a,b与c钉在一起,∠1=100°,∠2=60°.要使木条a与b平行,木条a顺时针旋转的度数至少是( )
A.10° B.20° C.30° D.40°
10、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )
A.140° B.100° C.80° D.40°
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、点A在点B的北偏东80°方向上,点C在射线BA与正北方向夹角的角平分线上,那么点C位于点A__处.
2、如图,直线mn.若,,则的大小为_____度.
3、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°.
4、如图所示,点A,B,C,D在同一条直线上.在线段PA,PB,PC,PD中,最短的线段是________,理由是________.
5、(1)如图1,若直线m、n相交于点O,∠1=90°,则a______b;
(2)若直线AB、CD相交于点O,且AB⊥CD,则∠BOD =______;
(3)如图2,BO⊥AO,∠BOC与∠BOA的度数之比为1∶3,那么∠COA=___ ,∠BOC的补角为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知∠MON=60°,点A在射线OM上,点B在射线ON下方.请选择合适的画图工具按要求画图并回答问题.(要求:不写画法,保留画图痕迹)
(1)过点A作直线l,使直线l只与∠MON的一边相交;
(2)在射线ON上取一点C,使得OC=OA,连接AC,度量∠OAC的大小为 °;(精确到度)
(3)在射线ON上作一点P,使得AP+BP最小,作图的依据是 .
2、如图,已知AB∥CD,BE平分∠ABC,DB平分∠CDF,且∠ABC+∠CDF=180°.
求证:BE⊥DB.
证明:∵AB∥CD
∴∠ABC=∠BCD( )
∵∠ABC+∠CDF=180°( )
∴∠BCD+∠CDF=180°( )
∴BC∥DF( )
于是∠DBC=∠BDF( )
∵BE平分∠ABC,DB平分∠CDF
∴∠EBC=∠ABC,∠BDF= ( )
∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF)
即∠EBD=
∴BE⊥DB( )
3、如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点叫做格点,请利用格点和直尺画图,并完成填空.(画出的点、线请用铅笔描粗描黑)
(1)画线段和直线;
(2)过点画的垂线,垂足为点,并标出经过的格点;
(3)线段长是点______到直线______的距离;
(4)三角形的面积是______.
4、如图,直线AB、CD相交于点O,,过点O画,O为垂足,求的度数.
5、如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.
(1)求∠BOC的度数;
(2)试说明OE平分∠AOC.
-参考答案-
一、单选题
1、C
【解析】
【分析】
由平行线之间的距离的定义判定即可得解.
【详解】
解:从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两条平行线之间的距离,
线段和都可以示直线与之间的距离,
故选:C.
【点睛】
本题考查了平行线之间的距离,解题的关键是熟记平行线之间的距离的概念.
2、B
【解析】
【分析】
根据平行线的判定方法,逐项判断即可.
【详解】
解:、和是一对内错角,当时,可判断,故不符合题意;
、和是邻补角,当时,不能判定,故符合题意;
、和是一对同位角,当时,可判断,故不合题意;
、和是一对同旁内角,当时,可判断,故不合题意;
故选B.
【点睛】
本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
3、A
【解析】
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
4、C
【解析】
【分析】
先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
【详解】
解:∵OA平分∠EOC,∠EOC=100°,
∴∠AOC=∠EOC=50°,
∴∠BOC=180°﹣∠AOC=130°.
故选:C.
【点睛】
本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
5、B
【解析】
【分析】
由OA⊥OB,得出∠AOB=90°,再根据∠AOD=35°,由余角的定义可得出∠BOD,再根据补角的定义可得出∠BOC的度数.
【详解】
解:∵OA⊥OB,
∴∠AOB=90°,
∵∠AOD=35°,
∴∠BOD=90°-35°=55°,
∴∠BOC=180-55°=125°,
故选B.
【点睛】
本题考查了垂线的定义,平角的定义,关键是利用90°和180°的数据进行计算.
6、A
【解析】
【分析】
由角平分线的定义可求得∠AOD的度数,由对顶角相等即可求得结果.
【详解】
∵OE平分∠AOD,
∴∠AOD=2∠DOE=2×36°=72°,
∵∠BOC与∠AOE是对顶角,
∴∠BOC的度数为72°,
故选:A
【点睛】
本题考查了角平分线的定义、对顶角相等等知识,掌握这两个知识是解题的关键.
7、D
【解析】
【分析】
如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D.
【详解】
解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.
则有:AF=FD,BE=EC,AB=EF=CD,
∴四边形ABEF向右平移可以与四边形EFCD重合,
∴平行四边形ABCD是平移重合图形.
同理可证,正方形,长方形,也是平移重合图形,故选项A、B、C不符合题意,
而找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D符合题意;
故选D.
【点睛】
本题考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题.
8、D
【解析】
【分析】
由题意直接根据∠A的两边分别垂直于∠B的两边画出符合条件的图形进行判断即可.
【详解】
解:BD⊥AD,CE⊥AB,如图:
∵∠A=90°﹣∠ABD=∠DBC,
∴∠A与∠DBC两边分别垂直,它们相等,
而∠DBE=180°﹣∠DBC=180°﹣∠A,
∴∠A与∠DBE两边分别垂直,它们互补,
故选:D.
【点睛】
本题考查垂线及角的关系,解题关键是根据已知画出符合条件的图形.
9、B
【解析】
【分析】
由平行线的性质可求解旋转后的∠1的对顶角为120°,将其与∠1的原角度相比较即可求解.
【详解】
解:如图,当时,∠2+∠3=180°
∵∠2=60°
∴∠3=120°
∵∠1=∠3
∴∠1=120°
∵现在木条a与木条c的夹角∠1=100°
∴木条a顺时针旋转的度数至少是120°﹣100°=20°
故选:B.
【点睛】
本题考查了对顶角,平行线的性质.解题的关键在于确定角度之间的数量关系.
10、B
【解析】
【分析】
根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
【详解】
解:∵∠AOE+∠BOE=180°,
∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
又∵OE平分∠AOC,
∴∠AOE=∠COE=40°,
∴∠BOC=∠BOE﹣∠COE
=140°﹣40°
=100°,
故选:B.
【点睛】
本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
二、填空题
1、北偏东40°
【解析】
【分析】
先根据题意画出图形,可得∠DBF=80°,DB//EA,由平行线的性质可得∠EAF=∠DBF=80°,结合角平分线的定义可求解∠EAC=40°,进而可求解答案.
【详解】
解:如图,∠DBF=80°,DB//EA,
∴∠EAF=∠DBF=80°,
∵AC平分∠EAF,
∴∠EAC=40°,
∴点C位于点A北偏东40°,
故答案为:北偏东40°.
【点睛】
本题主要考查方向角,角平分线的定义,平行线的性质,根据题意画出图形是解题的关键.
2、70
【解析】
【分析】
如图(见解析),过点作,再根据平行线的性质可得,然后根据角的和差即可得.
【详解】
解:如图,过点作,
,
,
,
,
,
故答案为:70.
【点睛】
本题考查了平行线的性质与推论,熟练掌握平行线的性质是解题关键.
3、120
【解析】
【分析】
由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.
【详解】
解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,
∴∠BOC=120°.
故答案为:120.
【点睛】
本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.
4、 PC 垂线段最短
【解析】
【分析】
根据垂线段最短求解即可.
【详解】
解:∵,PA,PB,PD都不垂直于AD,
∴由垂线段最短可得,最短的线段是PC,
理由是:垂线段最短.
故答案为:PC;垂线段最短.
【点睛】
此题考查了垂线段最短的性质,解题的关键是熟练掌握垂线段最短.
5、 ⊥ 90° 60° 150°
【解析】
略
三、解答题
1、 (1)见解析
(2)见解析,60
(3)见解析,两点之间,线段最短
【解析】
【分析】
(1)根据相交线的定义(如果两条直线只有一个公共点时,我们称这两条直线相交)作图即可;
(2)利用直尺先测量出OA长度,然后以点O为左端点,在射线ON上找出点C,连接AC,利用量角器度量角的度数即可得;
(3)连接AB与射线ON交于点P,即为所求,依据两点之间线段最短确定.
(1)
解:过点A作直线l如图所示:
(2)
解:利用直尺先测量出OA长度,然后以点O为左端点,在射线ON上找出点C,连接AC,如图所示;
经过测量:,
故答案为:60;
(3)
解:连接AB,与射线ON交于点P,即为所求,
依据两点之间线段最短确定,
故答案为:两点之间线段最短.
【点睛】
题目主要考查相交线的定义、作一条线段等于已知线段、度量角度、两点之间线段最短等知识点,理解题意,综合运用这些知识点是解题关键.
2、两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义.
【解析】
【分析】
结合条件与图形,读懂每一步推理及推理的依据,即可完成解答.
【详解】
∵AB∥CD,
∴∠ABC=∠BCD(两直线平行,内错角相等),
∵∠ABC+∠CDF=180°(已知),
∴∠BCD+∠CDF=180°(等量代换),
∴BC∥DF(同旁内角互补,两直线平行),
于是∠DBC=∠BDF(两直线平行,内错角相等),
∵BE平分∠ABC,DB平分∠CDF,
∴∠EBC=∠ABC,∠BDF=∠CDF(角平分线定义),
∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF),
即∠EBD=90°,
∴BE⊥DB(垂直的定义).
故答案分别为;两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义
【点睛】
本题考查了平行线的判定与性质,角平分线的定义及垂直的定义等知识,根据题意读懂每步推理,弄清每步推理的依据是完成本题的关键.
3、 (1)见解析
(2)见解析
(3),
(4)
【解析】
【分析】
(1)连接 过两点画直线即可;
(2)观察线段,可得是网格图中3个小正方形组成的小长方形的对角线,利用这个特点画线段即可;
(3)由点到直线的距离的概念可直接得到答案;
(4)利用长方形的面积减去周围三个三角形的面积即可.
(1)
解:如图,线段 直线即为所求作的线段与直线,
(2)
解:如(1)中图,即为所求作的垂线,为格点,为垂足.
(3)
解:由点到直线的距离的概念可得:线段长是点到直线的距离.
故答案为:
(4)
解:
故答案为:
【点睛】
本题考查的是画线段,直线,利用网格图作已知直线的垂线,点到直线的距离,网格三角形的面积的计算,掌握以上基础知识是解本题的关键.
4、20°或160°
【解析】
【分析】
分两种情况画出图形,根据对顶角和垂线的定义分别求解.
【详解】
解:如图:
∵∠AOC=70°,
∴∠BOC=180°-70°=110°,
∵EO⊥CD,
∴∠BOE=∠BOC-∠COE=20°;
如图,
∵∠AOC=70°,
∴∠BOD=70°,
∵EO⊥CD,
∴∠BOE=∠BOD+∠DOE=160°;
综上:∠BOE的度数为20°或160°.
【点睛】
本题考查对顶角的性质,垂线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
5、 (1)∠BOC=60°
(2)见解析
【解析】
【分析】
(1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;
(2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.
【详解】
(1)∵∠AOB=∠BOC+∠AOC=180°,
又∠BOC:∠AOC=1:2,
∴∠AOC=2∠BOC,
∴∠BOC+2∠BOC=180°,
∴∠BOC=60°;
(2)∵OD平分∠BOC,
∴∠BOD=∠DOC,
∵∠DOC+∠COE=90°,∠AOB是平角,
∴∠AOE+∠BOD=90°,
∴∠AOE=∠COE
即OE平分∠AOC.
【点睛】
本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课时训练: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课时训练,共23页。试卷主要包含了如图,点A,下列说法错误的是等内容,欢迎下载使用。
冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题,共21页。试卷主要包含了下列A,下列说法正确的是等内容,欢迎下载使用。
初中数学第七章 相交线与平行线综合与测试同步达标检测题: 这是一份初中数学第七章 相交线与平行线综合与测试同步达标检测题,共23页。