冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题
展开这是一份冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题,共22页。试卷主要包含了下列命题中,是假命题的是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,点O在直线BD上,已知,,则的度数为( ).
A.20° B.70° C.80° D.90°
2、如图,①,②,③,④可以判定的条件有( ).
A.①②④ B.①②③ C.②③④ D.①②③④
3、如图,∠1=∠2,∠3=25°,则∠4等于( )
A.165° B.155° C.145° D.135°
4、下列各组图形中,能够通过平移得到的一组是( )
A. B.
C. D.
5、下列命题中,是假命题的是( )
A.在同一平面内,过一点有且只有一条直线与已知直线垂直
B.同旁内角互补,两直线平行
C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行
D.过一点有且只有一条直线与已知直线平行
6、如图,已知OE是的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )
A. B. C. D.
7、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )
A.140° B.100° C.80° D.40°
8、如图,将木条a,b与c钉在一起,∠1=100°,∠2=60°.要使木条a与b平行,木条a顺时针旋转的度数至少是( )
A.10° B.20° C.30° D.40°
9、如图所示,∠1和∠2是对顶角的图形共有( )
A.0个 B.1个 C.2个 D.3个
10、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )
A.30° B.60° C.30°或60° D.60°或120°
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、将一把直尺和一块含30°角的直角三角板按如图所示方式摆放,其中∠CBD=90°,∠BDC=30°,若∠1=78°,则∠2的度数为________.
2、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的________.
3、已知:如图,直线AB、CD被直线GH所截,,求证: ABCD.完成下面的证明:
证明:∵AB被直线GH所截,
∴_____
∵
∴______
∴______________( )(填推理的依据).
4、如图,ADBC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是2,则△BOC的面积是 ___.
5、一般地,将一个图形依次沿两个坐标轴方向平移所得到的图形,可以通过将原来的图形作_________平移得到.
对一个图形进行平移,这个图形上所有点的坐标都要发生相应的_________;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线AB、CD相交于点O,OE⊥CD.
(1)若∠BOD∶∠BOC=1∶4,求∠AOE的度数;
(2)在第一问的条件下,过点O作OF⊥AB,则∠EOF的度数为 .
2、如图,已知EFAB,∠DEF=∠A.
(1)求证:DEAC;
(2)若CD平分∠ACB,∠BED=60°,求∠ACD的度数.
3、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:
(1)如图a,在线段AB上找一点P,使PC+PD最小.
(2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.
(3)如图c,画线段CM∥AB.要求点M在格点上.
4、如图,,P为,之间的一点,已知,,求∠1的度数.
5、如图,直线AB、CD相交于点O,射线OE在∠DOB内部,且.过O作OF⊥OE.若,
(1)求∠BOE的度数(用含m的代数式表示);
(2)若,试说明OB平分∠DOF.
-参考答案-
一、单选题
1、B
【解析】
【分析】
直接利用垂直的定义结合互余得出答案.
【详解】
解:∵点O在直线DB上, OC⊥OA,
∴∠AOC=90°,
∵∠1=20°,
∴∠BOC=90°−20°=70°,
故选:B.
【点睛】
此题主要考查了垂线以及互余,正确把握相关定义是解题关键.
2、A
【解析】
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
3、B
【解析】
【分析】
设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
【详解】
解:设∠4的补角为,如下图所示:
∠1=∠2,
,
,
.
故选:B.
【点睛】
本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
4、B
【解析】
【分析】
根据平移的性质对各选项进行判断.
【详解】
A、左图是通过翻折得到右图,不是平移,故不符合题意;
B、上图可通过平移得到下图,故符合题意;
C、不能通过平移得到,故不符合题意;
D、不能通过平移得到,故不符合题意;
故选B.
【点睛】
本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.
5、D
【解析】
【分析】
根据垂线公理,平行线的判定,平行线的传递,平行线的性质进行判断即可.
【详解】
解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,这个命题为真命题;
B、同旁内角互补,两直线平行,这个命题为真命题;
C、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,这个命题为真命题;
D、过直线外一点有且只有一条直线与已知直线平行,故这个命题是假命题.
故选:D.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
6、B
【解析】
【分析】
根据角平分线定义得到,由于反例要满足角相等且不是对顶角,所以可作为反例.
【详解】
解:OE是的平分线,
可作为说明命题“相等的角是对顶角”为假命题的反例
故选:B.
【点睛】
本题考查命题与定理:判断一件事情的语句叫做命题,命题由题设和结论组成,题设是已知事项,结论是由已知事项推出的事实,一个命题可以写出“如果…那么…”的形式,任何一个命题非真即假,判断一个命题是假命题,只要举出反例即可.
7、B
【解析】
【分析】
根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
【详解】
解:∵∠AOE+∠BOE=180°,
∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
又∵OE平分∠AOC,
∴∠AOE=∠COE=40°,
∴∠BOC=∠BOE﹣∠COE
=140°﹣40°
=100°,
故选:B.
【点睛】
本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
8、B
【解析】
【分析】
由平行线的性质可求解旋转后的∠1的对顶角为120°,将其与∠1的原角度相比较即可求解.
【详解】
解:如图,当时,∠2+∠3=180°
∵∠2=60°
∴∠3=120°
∵∠1=∠3
∴∠1=120°
∵现在木条a与木条c的夹角∠1=100°
∴木条a顺时针旋转的度数至少是120°﹣100°=20°
故选:B.
【点睛】
本题考查了对顶角,平行线的性质.解题的关键在于确定角度之间的数量关系.
9、B
【解析】
【分析】
对顶角:有公共的顶点,角的两边互为反向延长线,根据定义逐一判断即可.
【详解】
只有(3)中的∠1与∠2是对顶角.
故选B
【点睛】
本题考查了对顶角的定义,理解对顶角的定义是解题的关键.
10、D
【解析】
【分析】
根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.
【详解】
解:如图1,
∵a∥b,
∴∠1=∠α,
∵c∥d,
∴∠β=∠1=∠α=60°;
如图(2),
∵a∥b,
∴∠α+∠2=180°,
∵c∥d,
∴∠2=∠β,
∴∠β+∠α=180°,
∵∠α=60°,
∴∠β=120°.
综上,∠β=60°或120°.
故选:D.
【点睛】
本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.
二、填空题
1、18°##18度
【解析】
【分析】
根据平角及已知条件可得,由平行线的性质可得,结合图形求解即可得.
【详解】
解:∵,,
∴,
∵四边形AEGH为矩形,
∴,
∴,
∵,
∴,
故答案为:.
【点睛】
题目主要考查角度的计算及平行线的性质,理解题意,结合图形求角度是解题关键.
2、距离
【解析】
略
3、 3 180° AB CD 同旁内角互补,两直线平行
【解析】
【分析】
先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD.
【详解】
证明:∵AB被直线GH所截,∠1=112°,
∴∠1=∠3=112°
∵∠2=68°,
∴∠2+∠3=180°,
∴AB∥CD,(同旁内角互补,两直线平行)
故答案为∠3,180°,AB,CD,同旁内角互补,两直线平行.
【点睛】
本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.
4、3
【解析】
【分析】
根据平行可得:与高相等,即两个三角形的面积相等,根据图中三角形之间的关系即可得.
【详解】
解:∵,
∴与高相等,
∴,
又∵,
∴,
故答案为:3.
【点睛】
题目主要考查平行线间的距离相等,三角形面积的计算等,理解题意,掌握平行线之间的距离相等是解题关键.
5、 一次 变化
【解析】
略
三、解答题
1、(1);(2)或.
【解析】
【分析】
(1)先根据可求出,从而可得,再根据垂直的定义可得,然后根据即可得;
(2)先根据(1)的结果求出的度数,再根据垂直的定义可得,然后分①在直线的上方,②在直线的下方两种情况,根据角的和差即可得.
【详解】
解:(1),
,
,
,
,
;
(2)由(1)已得:,
,
,
,
由题意,分以下两种情况:
①如图,当在直线的上方时,
则;
②如图,当在直线的下方时,
则;
综上,的度数为或,
故答案为:或.
【点睛】
本题考查了邻补角、垂直,较难的是题(2),正确分两种情况讨论是解题关键.
2、 (1)见解析
(2)30°
【解析】
【分析】
(1)根据EFAB,可得∠BDE=∠DEF,又∠DEF=∠A等量代换可得∠BDE=∠A,进而可得DEAC;
(2)根据(1)的结论可得,根据角平分线的定义即可求得∠ACD的度数.
(1)
∵EFAB,
∴∠BDE=∠DEF,
又∠DEF=∠A
∴∠BDE=∠A,
∴DEAC;
(2)
DEAC,∠BED=60°,
CD平分∠ACB,
【点睛】
本题考查了平行线的性质与判定,角平分线的意义,掌握平行线的性质与判定是解题的关键.
3、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;
(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;
(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.
【详解】
解:(1)如图a,点P即为所求;
(2)如图b,点Q和线段CQ即为所求;
(3)如图c,线段CM即为所求.
【点睛】
本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.
4、30°
【解析】
【分析】
首先过点P作射线,根据两直线平行,内错角相等,即可求得答案.
【详解】
过点P作射线,如图①.
∵,,
∴.
∴.
∵,∴.
又∵.
∴.
【点睛】
此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.
5、 (1)
(2)见解析
【解析】
【分析】
(1)根据直角的性质,可得,从而得到,再由,即可求解;
(2)根据,可得,再由,可得,从而得到,,即可求解.
(1)
解:∵,
∴,
∵直线AB、CD相交于点O,
∴,
∵,
∴,
∵,
∴
(2)
解:∵且,
∴,
∵,
∴,
∴,,
∴.
∴OB平分.
【点睛】
本题主要考查了垂直的性质,角平分线的有关计算,熟练掌握垂直的性质,根据题意得到角与角之间的数量关系是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课时训练,共21页。试卷主要包含了如图,直线b,下列说法中不正确的是,如图,,交于点,,,则的度数是,下列各图中,和是对顶角的是等内容,欢迎下载使用。
这是一份初中冀教版第七章 相交线与平行线综合与测试课时训练,共22页。试卷主要包含了下列命题不正确的是,下列说法正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试一课一练,共24页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。