冀教版第七章 相交线与平行线综合与测试课时练习
展开
这是一份冀教版第七章 相交线与平行线综合与测试课时练习,共23页。试卷主要包含了下列说法错误的是,如图,,交于点,,,则的度数是,如图,直线a等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,给出下列条件,①∠1=∠2,②∠3=∠4,③ADBE,且∠D=∠B,④ADBE,且∠DCE=∠D,其中能推出ABDC的条件为( )A.①② B.②③ C.③④ D.②③④2、下列命题是真命题的是( )A.内错角相等B.过一点有且只有一条直线与已知直线垂直C.相等的角是对顶角D.过直线外一点,有且只有一条直线与已知直线平行3、如图,∠1=∠2,则下列结论正确的是( )A.AD∥BC B.AB∥CDC.AD∥EF D.EF∥BC4、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°5、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )A.两点之间,线段最短B.两点之间,直线最短C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短6、下列说法错误的是( )A.经过两点,有且仅有一条直线B.平面内过一点有且只有一条直线与已知直线垂直C.两点之间的所有连线中,线段最短D.平面内过一点有且只有一条直线与已知直线平行7、如图,,交于点,,,则的度数是( )A.34° B.66° C.56° D.46°8、如图,直线a、b被直线c所截,下列说法不正确的是( )A.1与5是同位角 B.3与6是同旁内角C.2与4是对顶角 D.5与2是内错角9、如果∠A的两边分别垂直于∠B的两边,那么∠A和∠B的数量关系是( )A.相等 B.互余或互补 C.互补 D.相等或互补10、下列说法正确的是( )A.不相交的两条直线叫做平行线B.过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图A,C,E共线,请你添加一个条件,使ABCD,这个条件是______,你的依据是_____.2、如图,已知DE∥BC,∠ABC=70°,那么直线AB与直线DE的夹角等于 ___度.3、如图,直线AB和CD相交于点O,∠BOE=90°,∠DOE=130°,则∠AOC=______.4、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____5、如图,直线 a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=______°.三、解答题(5小题,每小题10分,共计50分)1、如图,,试说明.证明:∵(己知),∴(___________________),∴____________(同位角相等,两直线平行),∵(已知),∴(___________________),∴(___________________),∴(两直线平行,同位角相等).2、如图,点,分别在直线,上,,.射线从开始,绕点以每秒3度的速度顺时针旋转至后立即返回,同时,射线从开始,绕点以每秒2度的速度顺时针旋转至停止.射线停止运动的同时,射线也停止运动,设旋转时间为t(s).(1)当射线经过点时,直接写出此时的值;(2)当时,射线与交于点,过点作交于点,求;(用含的式子表示)(3)当EM//FN时,求的值.3、如图,用三张卡片拼成如下图①,图②所示的两个四边形,其周长分别为、.(1)请你根据所学知识解释:在直角三角形卡片中,“”的理由是_________.(填写正确选项的字母)A.两点之间线段最短;B.过一点有且只有一条直线与已知直线垂直;C.垂线段最短;D.两点确定一条直线.(2)分别计算、(用含m、n的代数式表示);(3)比较与的大小,并说明理由.4、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.(1)如图1,求∠DOE的度数;(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.5、探究:如图1直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上过点D作交AC于点E,过点E作交BC于点F.若,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:,_____________.(_____________),∴_________.(_______________).(等量代换),___________.应用:如图2,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作交AC于点E,过点E作交BC于点F.若,求的度数并说明理由 -参考答案-一、单选题1、B【解析】【分析】根据平行线的判定逐个判断即可.【详解】①∠1=∠2,②∠3=∠4,③ADBE, ∠D=∠B,④∠DCE=∠D,能推出ABDC的条件为②③故选B【点睛】本题考查了平行线的性质与判定定理,掌握平行线的判定定理是解题的关键.2、D【解析】【分析】根据平行线的性质、垂直的判定、对顶角和平行线的判定进行判断即可.【详解】解:A、两直线平行,内错角相等,原命题是假命题;B、在同一平面上,过一点有且只有一条直线与已知直线垂直,原命题是假命题;C、相等的角不一定是对顶角,原命题是假命题;D、过直线外一点,有且只有一条直线与已知直线平行,是真命题;故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、垂直的判定、对顶角和平行线的判定.3、C【解析】略4、D【解析】【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意; ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意; (同位角相等,两直线平行)故C不符合题意; ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定 故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.5、D【解析】【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.6、D【解析】【分析】根据垂线的性质、线段的性质、直线的性质、平行公理判断下列选项.【详解】解:由垂线的性质、线段的性质、直线的性质可知、、正确;A、根据直线的性质可知选项正确,不符合题意;B、根据垂线的性质可知选项正确,不符合题意;C、根据线段的性质可知选项正确,不符合题意;D、由平行公理可知选项不正确,需要保证该点不在已知直线上,符合题意;故选:D.【点睛】本题主要考查了垂线的性质、线段的性质、直线的性质、平行公理,解题的关键是掌握相关的概念.7、C【解析】【分析】由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵,,∴,∵,∴,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.8、D【解析】【分析】根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.【详解】解:A、∠1与∠5是同位角,故本选项不符合题意;B、∠3与∠6是同旁内角,故本选项不符合题意.C、∠2与∠4是对顶角,故本选项不符合题意;D、∠5与2不是内错角,故本选项符合题意.故选:D.【点睛】本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.9、D【解析】【分析】由题意直接根据∠A的两边分别垂直于∠B的两边画出符合条件的图形进行判断即可.【详解】解:BD⊥AD,CE⊥AB,如图:∵∠A=90°﹣∠ABD=∠DBC,∴∠A与∠DBC两边分别垂直,它们相等,而∠DBE=180°﹣∠DBC=180°﹣∠A,∴∠A与∠DBE两边分别垂直,它们互补,故选:D.【点睛】本题考查垂线及角的关系,解题关键是根据已知画出符合条件的图形.10、B【解析】【分析】根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.【详解】解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;过一点有且仅有一条直线与已知直线垂直,故选项B正确;平角是角的两边在同一直线上的角,故选项C错误;过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;故选:B.【点睛】此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.二、填空题1、 ∠ECD=∠A 同位角相等,两直线平行(答案不唯一)【解析】【分析】根据平行线的判定定理添加即可.【详解】解:∵∠ECD=∠A,∴AB∥CD(同位角相等,两直线平行)故答案为:∠ECD=∠A;同位角相等,两直线平行(答案不唯一).【点睛】本题考查了平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.2、70或110##110或70【解析】【分析】先根据平行线的性质,求得∠AFE的度数,再根据邻补角的定义,即可得到∠AFD的度数.【详解】解:如图,直线AB和DE相交于点F,∵BC∥DE,∠ABC=70°,∴∠AFE=∠ABC=70°,∠AFD=180°-∠AFE=110°,∴直线AB、DE的夹角是70°或110°.故答案为:70或110.【点睛】本题主要考查了平行线的性质,熟记“两直线平行,同位角相等”是解题的关键.3、40°##40度【解析】【分析】先根据角的和差关系可求∠BOD,再根据对顶角相等可求∠AOC.【详解】解:∵∠BOE=90°,∠DOE=130°,∴∠BOD=130°-90°=40°,又 ∴∠AOC=40°.故答案为:40°.【点睛】本题考查了对顶角,关键是根据角的和差关系可求∠BOD.4、【解析】【分析】先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.【详解】解:∠EFG+∠EGD=150°,∠EGD=折叠故答案为:.【点睛】本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.5、75【解析】【分析】先计算∠AOB的度数,后利用对顶角相等确定即可.【详解】如图,根据题意,得∠AOB=135°-60°=75°,∵∠AOB=∠1, ∴∠1=75°,三、解答题1、垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行【解析】【分析】根据垂直定义求出∠B=∠CDF=90°,根据平行线的判定得出AB∥EF,EF∥CD,即可得出答案.【详解】证明:∵(己知),∴(垂直定义),∴ABCD(同位角相等,两直线平行),∵(已知),∴(内错角相等,两直线平行),∴(平行于同一条直线的两条直线平行),∴(两直线平行,同位角相等).故答案为:垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行【点睛】本题考查了平行线的判定的应用,能正确运用判定定理进行推理是解此题的关键,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,④平行于同一直线的两直线平行.2、 (1)的值为30(2)(3)【解析】【分析】(1)∠CFE的度数除以射线FN旋转的速度即可求得t的值;(2)过点作直线,则由已知可得,由平行线的性质可得∠KPF,再由垂直关系即可求得∠KPE;(3)当时,与不平行;当时,与可能平行,当时,设与交于点,由平行线的性质建立方程,即可求得t的值.(1)的速度为每秒,,当射线经过点时,所用的时间为:;(2)过点作直线,如图所示:,,,,,,,;(3)与的速度不相等,当时,与不平行;当时,与可能平行,当时,设与交于点,如图所示:,,由题意可得:,,,,,,解得:.【点睛】本题是与平行线有关的综合问题,它考查了平行线的性质、垂直的性质、角的和差运算,运用了方程思想.3、 (1)C(2),(3),理由见解析【解析】【分析】(1)根据垂线段最短解答;(2)根据周长公式计算即可;(3)利用作差法比较大小.(1)解:“”的理由是垂线段最短,故选:C;(2)解:;(3)解:;∵n<m,∴n-m<0,∴,∴.【点睛】此题考查了垂线的性质,计算图形的周长,利用作差法比较两个式子的大小,整式加减的应用,正确掌握垂线的性质及作差法比较大小的方法是解题的关键.4、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【解析】【分析】(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.【详解】解:(1)∵EO⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠EOC:∠BOD=7:11,∴∠COE=35°,∠BOD=55°,∴∠DOE=∠BOD+∠BOE=145°;(2)∵MN⊥CD,∴∠COM=90°,∴∠EOM=∠COE+∠COM=125°,∵∠BOD=55°,∴∠BOC=180°-∠BOD=125°,∴∠AOD=∠BOC=125°,∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.5、探究:∠EFC;两直线平行,内错角相等;∠EFC;两直线平行,同位角相等;50°;应用:,见解析.【解析】【分析】探究:根据平行线的性质填写证明过程即可;应用:根据探究的方法利用平行线的性质求角度即可.【详解】探究:,.(_两直线平行,内错角相等),∴.(两直线平行,同位角相等_).(等量代换),.应用:,∴∠ABC=∠ADE=65°.(两直线平行,同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°−65°=115°.【点睛】本题考查了平行线的性质求角度,掌握平行线的性质是解题的关键.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共21页。试卷主要包含了下列语句正确的个数是,下列说法错误的是,如图,不能推出a∥b的条件是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题,共24页。试卷主要包含了下列命题中,是真命题的是,下列命题不正确的是,下列说法正确的是,如图,点A等内容,欢迎下载使用。
这是一份2020-2021学年第七章 相交线与平行线综合与测试当堂达标检测题,共22页。试卷主要包含了下列说法中不正确的是,下列说法正确的是等内容,欢迎下载使用。