2021学年第七章 相交线与平行线综合与测试课堂检测
展开
这是一份2021学年第七章 相交线与平行线综合与测试课堂检测,共21页。试卷主要包含了下列命题中,是假命题的是,如图,直线b等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于( )A.25° B.27° C.29° D.45°2、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )A.3.5 B.4 C.5 D.5.53、如图,已知AB∥CD,∠1=30°,∠2=90°,则∠3等于( )A.60° B.50° C.45° D.30°4、如图,直线被所截,下列说法,正确的有( )①与是同旁内角;②与是内错角;③与是同位角;④与是内错角.A.①③④ B.③④ C.①②④ D.①②③④5、如图,某位同学将一副三角板随意摆放在桌上,则图中的度数是( )A.70° B.80° C.90° D.100°6、下列命题中,是假命题的是( )A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.同旁内角互补,两直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.过一点有且只有一条直线与已知直线平行7、下列各图中,∠1与∠2是对顶角的是( )A. B.C. D.8、如图,点,,,在同一条直线上,,,则的度数是( )A. B. C. D.9、如图,直线b、c被直线a所截,则与是( )A.对顶角 B.同位角 C.内错角 D.同旁内角10、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )A.30° B.45° C.60° D.75°第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、在平面内,把一个图形沿某一方向移动一定的距离,会得到一个新图形. 图形的这种移动叫做平移变换,简称_________.平移的性质:(1)新图形与原图形形状和大小_________,位置_________.(2)对应点的连线_________.2、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=58°,则∠BED的度数为______. 3、如图,AC平分∠DAB,∠1=∠2,试说明.证明:∵AC平分∠DAB( ),∴∠1=∠______( ),又∵∠1=∠2( ),∴∠2=∠______( ),∴AB______( ).4、同一平面内,两条直线相交有__________个交点,两条直线相交的特殊位置关系是__________.5、如图在△ABC中,AB=AC=5,S△ABC=10,AD是△ABC的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB、CD相交于点O,OE平分∠BOD,且.求∠AOC和∠DOE的度数.2、如图,已知,平分,平分,求证.证明:∵平分(已知),∴ ( ),同理 ,∴ ,又∵(已知)∴ ( ),∴.3、如图,,,,,与相交于点.(1)求证:;(2)求的度数.4、已知一角的两边与另一个角的两边分别平行,试探索这两个角之间的关系,并说明你的结论.(1)如图1所示,,,则与的关系是 ;(2)如图2所示,,,则与的关系是 ;(3)经过上述探索,我们可以得到一个结论(试用文字语言表述): ;(4)若两个角的两边分别平行,且一个角比另一个角的倍少,则这两个分别是多少度?5、如图,DH交BF于点E,CH交BF于点G,,,.试判断CH和DF的位置关系并说明理由. -参考答案-一、单选题1、B【解析】【分析】根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.【详解】解:∵AD∥BC,∴∠ABC=∠DAB=54°,∠EBC=∠E,∵BE平分∠ABC,∴∠EBC=∠ABC=27°,∴∠E=27°.故选:B.【点睛】本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.2、D【解析】【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.【详解】∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.∵AB=3,∴AC=5,∴3≤AP≤5,故AP不可能是5.5,故选:D.【点睛】本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.3、A【解析】略4、D【解析】【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①与是同旁内角,说法正确;②与是内错角,说法正确;③与是同位角,说法正确;④与是内错角,说法正确,故选:D.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.5、C【解析】【分析】如图(见解析),过点作,先根据平行线的性质可得,再根据角的和差即可得.【详解】解:如图,过点作,,,,,故选:C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.6、D【解析】【分析】根据垂线公理,平行线的判定,平行线的传递,平行线的性质进行判断即可.【详解】解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,这个命题为真命题;B、同旁内角互补,两直线平行,这个命题为真命题;C、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,这个命题为真命题;D、过直线外一点有且只有一条直线与已知直线平行,故这个命题是假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7、D【解析】略8、B【解析】【分析】根据推出,求出的度数即可求出答案.【详解】,∴,,,.故选:.【点睛】此题考查了平行线的判定及性质,熟记平行线的判定定理:内错角相等两直线平行是解题的关键.9、B【解析】【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.10、D【解析】【分析】由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.【详解】解:∵AC平分∠BAD,∠BAD=90°,∴∠BAC=45°∵BD∥AC,∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,∵∠CBD=∠ABD+∠ABC=45°+60°=105°,∴∠1=75°,故选D.【点睛】本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.二、填空题1、 平移 完全相同 不同 平行且相等【解析】略2、32°【解析】略3、 已知 3 角平分线的定义 已知 3 等量代换 CD 内错角相等,两直线平行【解析】【分析】根据平行线证明对书写过程的要求和格式填写即可.【详解】证明:∵AC平分∠DAB(已知),∴∠1=∠ 3 (角平分线的定义),又∵∠1=∠2(已知),∴∠2=∠ 3 (等量代换),∴AB∥CD (内错角相等,两直线平行).故答案为:已知;3;角平分线的定义;已知;3;等量代换;CD;内错角相等,两直线平行【点睛】本题主要考查平行线证明的书写,正确的逻辑推理和书写格式是解题的关键.4、 1 垂直【解析】略5、4【解析】【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF即可得出答案.【详解】解:方法一:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵S△ABC=×AB×CN,∴CN=4,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥4,即CF+EF的最小值是4.方法二:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∴点C与点B关于AD对称,过B作BE⊥AC于E,交AD于F,连接CF,则此时,CF+EF的值最小,且最小值为BE,∵S△ABC=•AC•BE=10,∴BE=4,∴CF+EF的最小值4,故答案为:4.【点睛】本题考查了垂线段最短以及对称轴作图,结合等腰三角形的性质取E或C对称点连接是解题的关键.三、解答题1、50°,25°.【解析】【分析】根据邻补角的性质,可得∠AOD+∠BOD=180°,即,代入可得∠BOD,根据对顶角的性质,可得∠∠AOC的度数,根据角平分线的性质,可得∠DOE的数.【详解】解:由邻补角的性质,得∠AOD+∠BOD=180°,即∵,∴.∴,∴∠AOC=∠BOD=50°,∵OE平分∠BOD,得∠DOE=∠DOB=25°.【点睛】本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解.2、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【解析】【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=∠ABC(角平分线的定义),同理∠1=∠BCD,∴∠1+∠2=(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°.故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.3、 (1)见解析(2)54°【解析】【分析】(1)由平行线的性质可得,等量代换可得,从而,然后根据根据平行线的传递性可证结论成立;(2)过点G作GM∥AB,由平行线的性质可得∠DCG=∠CGM,再由已知条件及角的和差关系可得答案.(1)证明:,,,,∴,,,.(2)解:如图,过点作,,由(1)知,,,,,,,,,,,即.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.4、(1);(2);(3)一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补;(4),【解析】【分析】(1)根据两直线平行,同位角相等,可求出∠1=∠2;(2)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠2=180°;(3)由(1)(2)可得出结论;(4)由(3)可列出方程,求出角的度数.【详解】解:(1)如图1.,.,..故答案为:.(2),.,..故答案为:.(3)由(1)、(2)得:一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补.(4)这两个角分别是、,且.,...这两个角分别为、. 图1 图2【点睛】本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.5、,理由见解析.【解析】【分析】先根据可得,根据平行线的性质可得,从而可得,再根据平行线的判定可得,然后根据平行线的性质可得,从而可得,最后根据平行线的判定即可得出结论.【详解】解:,理由如下:∵,∴,∴,∵,∴,∴,∴,∵,∴,∴.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共23页。试卷主要包含了下列命题是真命题的是,下列命题中是假命题的是,下列说法正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后作业题,共20页。试卷主要包含了下列说法正确的有,下列命题不正确的是,下列各图中,和是对顶角的是,下列语句正确的个数是,下列命题是真命题的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后练习题,共23页。试卷主要包含了以下命题是假命题的是,如图,点A等内容,欢迎下载使用。