初中数学冀教版七年级下册第七章 相交线与平行线综合与测试当堂达标检测题
展开冀教版七年级下册第七章相交线与平行线课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、下面的四个图形中,能够通过基本图形平移得到的图形有( )
A.1个 B.2个 C.3个 D.4个
2、如图,将木条a,b与c钉在一起,∠1=100°,∠2=60°.要使木条a与b平行,木条a顺时针旋转的度数至少是( )
A.10° B.20° C.30° D.40°
3、下列说法错误的是( )
A.经过两点,有且仅有一条直线
B.平面内过一点有且只有一条直线与已知直线垂直
C.两点之间的所有连线中,线段最短
D.平面内过一点有且只有一条直线与已知直线平行
4、如图,直线a、b被直线c所截,下列说法不正确的是( )
A.1与5是同位角 B.3与6是同旁内角
C.2与4是对顶角 D.5与2是内错角
5、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )
A.等于4cm B.小于4cm
C.大于4cm D.不大于4cm
6、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )
A.100° B.140° C.160° D.105°
7、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
8、如图,一定能推出的条件是( )
A. B. C. D.
9、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
10、如图,点,,,在同一条直线上,,,则的度数是( )
A. B. C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.
2、太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关.如图,从点照射到抛物线上的光线,等反射以后沿着与平行的方向射出.图中如果,,则________,________.
3、将一把直尺和一块含30°角的直角三角板按如图所示方式摆放,其中∠CBD=90°,∠BDC=30°,若∠1=78°,则∠2的度数为________.
4、如图,OA⊥OB,若∠1=55°16′,则∠2的度数是 _____.
5、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.
证明:∵(已知),
∴(垂直的定义).
∴________,
∵(已知),
∴________(依据1:________),
∴(依据2:________).
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线AB、CD相交于点O,,过点O画,O为垂足,求的度数.
2、如图,点G在上,已知,平分,平分请说明的理由.
解:因为(已知),
(邻补角的性质),
所以(________________)
因为平分,
所以(________________).
因为平分,
所以______________,
得(等量代换),
所以_________________(________________).
3、对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N为∠M的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.
(1)若∠H=120°,则∠H的4系补周角的度数为 °;
(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE;
①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;
②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).
4、作图并计算:如图,点O在直线上.
(1)画出的平分线(不必写作法);
(2)在(1)的前提下,若,求的度数.
5、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
证明:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD( )
∵MN∥AB,
∴∠A=( )( )
∵MN∥CD,
∴∠D= ( )
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
【应用拓展】如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据平移的性质,对逐个选项进行分析即可.
【详解】
解:第一个、第二个图不能由基本图形平移得到,
第三个、第四个图可以由基本图形平移得到,
故选:B.
【点睛】
本题主要考查了图形的平移,图形的平移只改变图形的位置,不改变图形的形状,大小,方向.学生比较难区分平移、旋转或翻转.
2、B
【解析】
【分析】
由平行线的性质可求解旋转后的∠1的对顶角为120°,将其与∠1的原角度相比较即可求解.
【详解】
解:如图,当时,∠2+∠3=180°
∵∠2=60°
∴∠3=120°
∵∠1=∠3
∴∠1=120°
∵现在木条a与木条c的夹角∠1=100°
∴木条a顺时针旋转的度数至少是120°﹣100°=20°
故选:B.
【点睛】
本题考查了对顶角,平行线的性质.解题的关键在于确定角度之间的数量关系.
3、D
【解析】
【分析】
根据垂线的性质、线段的性质、直线的性质、平行公理判断下列选项.
【详解】
解:由垂线的性质、线段的性质、直线的性质可知、、正确;
A、根据直线的性质可知选项正确,不符合题意;
B、根据垂线的性质可知选项正确,不符合题意;
C、根据线段的性质可知选项正确,不符合题意;
D、由平行公理可知选项不正确,需要保证该点不在已知直线上,符合题意;
故选:D.
【点睛】
本题主要考查了垂线的性质、线段的性质、直线的性质、平行公理,解题的关键是掌握相关的概念.
4、D
【解析】
【分析】
根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.
【详解】
解:A、∠1与∠5是同位角,故本选项不符合题意;
B、∠3与∠6是同旁内角,故本选项不符合题意.
C、∠2与∠4是对顶角,故本选项不符合题意;
D、∠5与2不是内错角,故本选项符合题意.
故选:D.
【点睛】
本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
5、D
【解析】
【分析】
根据平行线间的距离的定义解答即可.
【详解】
解:分两种情况:
如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,
若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm
直线a与直线b之间的距离不大于4cm.
故选D.
【点睛】
本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.
6、B
【解析】
【分析】
根据方位角的含义先求解 再利用角的和差关系可得答案.
【详解】
解:如图,标注字母,
射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,
而
故选B
【点睛】
本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.
7、B
【解析】
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
8、D
【解析】
【分析】
平行线的判定方法有:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行;根据平行线的判定方法逐一判定即可.
【详解】
解:A.和是直线和被直线所截所成的内错角,
不能推出,故本选项不符合题意;
B.和是直线和被直线所截所成的内错角,
不能推出,故本选项不符合题意;
C.和是直线和被直线所截所成的内错角,但不能判定,
不能判定,
和是直线和被直线所截所成的同位角,但不能判定,
不能判定,
不能推出,故本选项不符合题意;
D.和是直线和被直线所截所成的同位角,
能推出,故本选项符合题意;
故选:D.
【点睛】
本题主要考查了平行线的判定,熟记同位角相等,两直线平行是解决问题的关键.
9、D
【解析】
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
10、B
【解析】
【分析】
根据推出,求出的度数即可求出答案.
【详解】
,
∴,
,
,
.
故选:.
【点睛】
此题考查了平行线的判定及性质,熟记平行线的判定定理:内错角相等两直线平行是解题的关键.
二、填空题
1、18°##18度
【解析】
【分析】
根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.
【详解】
解:∵∠COE是直角,
∴∠COE=90°,
∵∠COF=36°,
∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,
∵OF平分∠AOE,
∴∠AOF=∠EOF=54°,
∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,
∴∠BOD=∠AOC=18°.
故答案为:18°.
【点睛】
本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.
2、 45°##45度 112°##45度
【解析】
【分析】
由平行线的性质即可得出,.
【详解】
由题意知AB//PQ//CD
∴
∴
故答案为:45°,112°
【点睛】
本题考查了平行线的性质,两直线平行,同位角相等、内错角相等、同旁内角互补.
3、18°##18度
【解析】
【分析】
根据平角及已知条件可得,由平行线的性质可得,结合图形求解即可得.
【详解】
解:∵,,
∴,
∵四边形AEGH为矩形,
∴,
∴,
∵,
∴,
故答案为:.
【点睛】
题目主要考查角度的计算及平行线的性质,理解题意,结合图形求角度是解题关键.
4、故答案为:
【点睛】
本题考查了角的计算,对顶角相等,熟练掌握对顶角相等这条性质是解题的关键.
75.
【解析】
【分析】
直接利用垂线的定义得出∠1+∠2=90°,再求∠1的余角∠2,结合度分秒转化得出答案.
【详解】
解:∵OA⊥OB,
∴∠AOB=90°,
∴∠1+∠2=90°,
∵∠1=55°16′,
∴∠2=90°﹣55°16′=34°44′.
故答案为:34°44′.
【点睛】
本题考查垂直定义,求一个角的余角,度分秒互化,掌握垂直定义,求一个角的余角,度分秒互化是解题关键.
5、 同角的余角相等 内错角相等,两直线平行
【解析】
【分析】
根据垂直的定义及平行线的判定定理即可填空.
【详解】
∵(已知),
∴(垂直的定义).
∴,
∵(已知),
∴(同角的余角相等),
∴(内错角相等,两直线平行).
故答案为:;;同角的余角相等;内错角相等,两直线平行.
【点睛】
此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.
三、解答题
1、20°或160°
【解析】
【分析】
分两种情况画出图形,根据对顶角和垂线的定义分别求解.
【详解】
解:如图:
∵∠AOC=70°,
∴∠BOC=180°-70°=110°,
∵EO⊥CD,
∴∠BOE=∠BOC-∠COE=20°;
如图,
∵∠AOC=70°,
∴∠BOD=70°,
∵EO⊥CD,
∴∠BOE=∠BOD+∠DOE=160°;
综上:∠BOE的度数为20°或160°.
【点睛】
本题考查对顶角的性质,垂线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
2、同角的补角相等,角平分线的定义,∠AGC,,内错角相等两直线平行
【解析】
【分析】
根据补角的性质,角平分线的定义,及平行线的判定定理依次分析解答.
【详解】
解:因为(已知),
(邻补角的性质),
所以(同角的补角相等)
因为平分,
所以(角平分线的定义).
因为平分,
所以∠AGC,
得(等量代换),
所以(内错角相等两直线平行),
故答案为:同角的补角相等,角平分线的定义,∠AGC,,内错角相等两直线平行.
【点睛】
此题考查了平行线的判定定理,熟记补角的性质,角平分线的定义及平行线的判定定理是解题的关键.
3、 (1)60
(2)①∠B=75°,②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.
【解析】
【分析】
(1)设∠H的4系补周角的度数为x°,根据新定义列出方程求解便可;
(2)①过E作EF∥AB,得∠B+∠D=∠BED,再由已知∠D=60°,∠B是∠E的3系补周角,列出∠B的方程,求得∠B便可;
②根据k系补周角的定义先确定P点的位置,再结合∠ABF=n∠ABE,∠CDF=n∠CDE求解k与n的关系即可求解.
(1)
解:设∠H的4系补周角的度数为x°,根据新定义得,120+4x=360,
解得,x=60,
∠H的4系补周角的度数为60°,
故答案为:60;
(2)
解:①过E作EF∥AB,如图1,
∴∠B=∠BEF,
∵AB∥CD,
∴EF∥CD,∠D=60°,
∴∠D=∠DEF=60°,
∵∠B+60°=∠BEF+∠DEF,
即∠B+60°=∠BED,
∵∠B是∠BED的3系补周角,
∴∠BED=360°-3∠B,
∴∠B+60°=360°-3∠B,
∴∠B=75°;
②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,理解题意是解题的关键.
4、(1)见解析;(2)150°
【解析】
【分析】
(1)根据画角平分线的方法,画出角平分线即可;
(2)先求出的度数,然后由角平分线的定义,即可求出答案.
【详解】
解:(1)如图,OD即为平分线
(2)解:∵,
∴,
,
∴;
【点睛】
本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.
5、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
【解析】
【分析】
基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
【详解】
解:基础问题:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(平行于同一条直线的两条直线平行),
∵MN∥AB,
∴∠A=∠AGM(两直线平行,内错角相等),
∵MN∥CD,
∴∠D=∠DGM(两直线平行,内错角相等),
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
类比探究:如图所示,过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD,
∵MN∥AB,
∴∠A=∠AGM,
∵MN∥CD,
∴∠D=∠DGM,
∴∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
又∵AB∥CD,
∴MN∥CD,PQ∥CD
∵MN∥AB,PQ∥AB,
∴∠BAG=∠AGM,∠BAH=∠AHP,
∵MN∥CD,PQ∥CD,
∴∠CDG=∠DGM,∠CDH=∠DHP,
∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
∴∠GDH=44°,∠DHP=22°,
∴∠CDG=66°,∠AHP=54°,
∴∠DGM=66°,∠BAH=54°,
∵AH平分∠BAG,
∴∠BAG=2∠BAH=108°,
∴∠AGM=108°,
∴∠AGD=∠AGM-∠DGM=42°.
【点睛】
本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
冀教版七年级下册第七章 相交线与平行线综合与测试课后测评: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后测评,共22页。试卷主要包含了下列说法中不正确的是,如图,,交于点,,,则的度数是,如图,下列条件中不能判定的是等内容,欢迎下载使用。
冀教版七年级下册第七章 相交线与平行线综合与测试课后作业题: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后作业题,共20页。试卷主要包含了下列说法正确的有,下列命题不正确的是,下列各图中,和是对顶角的是,下列语句正确的个数是,下列命题是真命题的是等内容,欢迎下载使用。
2020-2021学年第七章 相交线与平行线综合与测试综合训练题: 这是一份2020-2021学年第七章 相交线与平行线综合与测试综合训练题,共22页。试卷主要包含了如图,直线b,直线m外一点P它到直线的上点A,下列命题中是假命题的是等内容,欢迎下载使用。