初中数学冀教版七年级下册第七章 相交线与平行线综合与测试达标测试
展开冀教版七年级下册第七章相交线与平行线专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,一束平行光线中,插入一张对边平行的纸版,如果光线与纸版右下方所成的∠1是110°,那么光线与纸版左上方所成的∠2的度数是( )
A.110° B.100° C.90° D.70°
2、如图,,交于点,,,则的度数是( )
A.34° B.66° C.56° D.46°
3、下面的四个图形中,能够通过基本图形平移得到的图形有( )
A.1个 B.2个 C.3个 D.4个
4、如图,下列四个选项中不能判断AD∥BC的是( )
A. B.
C. D.
5、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于( )
A.25° B.27° C.29° D.45°
6、下列命题中,为真命题的是( )
A.若,则 B.若,则
C.同位角相等 D.对顶角相等
7、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )
A.30° B.45° C.60° D.75°
8、在下列汽车标志的图案中,能用图形的平移来分析其形成过程的是( )
A. B.
C. D.
9、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )
A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°
10、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )
A.30° B.40° C.50° D.60°
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示的网格是正方形网格,A,B,C,D是网格线的交点.我们晓观数学发现△ABD的面积与△ABC的面积相等,则这样的点D(不包含C)共有___个.
2、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.
3、如图,从人行横道线上的点P处过马路,下列线路中最短的是线路________,理由是________.
4、两条平行直线被第三条直线所截,同位角相等.
简称:两直线平行,同位角_________.
如图,因为a∥b,(已知)
所以∠1=_________.(两直线平行,同位角相等)
5、如图,已知AD∥CE,∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠AFC的余角等于2∠ABC的补角,则∠BAH的度数是______.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,,.求证:.
2、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数
3、按照下列要求完成作图及相应的问题解答
(1)作出∠AOB的角平分线OM;
(2)作直线,不能与直线OB相交,且交射线OM于点M;
(3)通过画图和测量,判断线段OP与线段PM的数量关系.
4、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
证明:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD( )
∵MN∥AB,
∴∠A=( )( )
∵MN∥CD,
∴∠D= ( )
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
【应用拓展】如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.
5、如图,已知于点,于点,,试说明.
解:因为(已知),
所以( ).
同理.
所以( ).
即.
因为(已知),
所以( ).
所以( ).
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据AB∥CD,BC∥AD,分别得到∠1+∠ADC=180°,∠2+∠ADC=180°,因此∠1=∠2,即可求解.
【详解】
解:如图:
∵AB∥CD,
∴∠1+∠ADC=180°,
∵BC∥AD,
∴∠2+∠ADC=180°,
∴∠1=∠2.
∵∠1=110°,
∴∠2=110°.
故选:A.
【点睛】
本题考查平行线的性质,两直线平行,同旁内角互补.
2、C
【解析】
【分析】
由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C
【点睛】
本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.
3、B
【解析】
【分析】
根据平移的性质,对逐个选项进行分析即可.
【详解】
解:第一个、第二个图不能由基本图形平移得到,
第三个、第四个图可以由基本图形平移得到,
故选:B.
【点睛】
本题主要考查了图形的平移,图形的平移只改变图形的位置,不改变图形的形状,大小,方向.学生比较难区分平移、旋转或翻转.
4、D
【解析】
【分析】
直接利用平行线的判定定理分析得出答案.
【详解】
解:A、已知,那么AD∥BC,故此选项不符合题意;
B、已知,那么AD∥BC,故此选项不符合题意;
C、已知,那么AD∥BC,故此选项不符合题意;
D、已知,那么AB∥CD,不能推出AD∥BC,故此选项符合题意;
故选:D.
【点睛】
本题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.
5、B
【解析】
【分析】
根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.
【详解】
解:∵AD∥BC,
∴∠ABC=∠DAB=54°,∠EBC=∠E,
∵BE平分∠ABC,
∴∠EBC=∠ABC=27°,
∴∠E=27°.
故选:B.
【点睛】
本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.
6、D
【解析】
【分析】
利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
【详解】
解:A、若,则或,故A错误.
B、当时,有,故B错误.
C、两直线平行,同位角相等,故C错误.
D、对顶角相等,D正确.
故选:D .
【点睛】
本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
7、D
【解析】
【分析】
由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.
【详解】
解:∵AC平分∠BAD,∠BAD=90°,
∴∠BAC=45°
∵BD∥AC,
∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,
∵∠CBD=∠ABD+∠ABC=45°+60°=105°,
∴∠1=75°,
故选D.
【点睛】
本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.
8、C
【解析】
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:A.不是由“基本图案”经过平移得到,故此选项不合题意;
B.不是由“基本图案”经过平移得到,故此选项不合题意;
C.是由“基本图案”经过平移得到,故此选项符合题意;
D.不是由“基本图案”经过平移得到,故此选项不合题意;
故选:C.
【点睛】
本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.
9、D
【解析】
【分析】
由,证明,再利用角的和差求解 从而可得答案.
【详解】
解:如图,标注字母, ,
∴,
此时的航行方向为北偏东30°,
故选:D.
【点睛】
本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.
10、C
【解析】
【分析】
由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
【详解】
解:由题意,
∵∠BMN与∠AME是对顶角,
∴∠BMN=∠AME=130°,
∵AB∥CD,
∴∠BMN+∠DNM=180°,
∴∠DNM=50°;
故选:C.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
二、填空题
1、5
【解析】
【分析】
一条直线有两条与之距离相等的直线,如图,在AB的左侧和右侧均作一条与AB距离大小为C到AB的距离的直线,直线与网格的交点即为所求.
【详解】
解:如图,连接CD
∵△ABD的面积与△ABC的面积相等
∴,可知在CD上与网格交的点均为D点
又∵一条直线有两条与之距离相等的直线
∴在AB的左侧作一条与AB平行的直线EF如图所示,EF与网格的交点也为D点
∴满足条件的D点有5个
故答案为5.
【点睛】
本题考查了平行的性质.解题的关键在于明确一条直线有两条与之距离相等的直线.
2、
【解析】
【分析】
先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.
【详解】
解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,
∴∠AOC=150°22′,
∵OD平分∠AOC,
∴,
故答案为:.
【点睛】
本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.
3、 PC 垂线段最短
【解析】
【分析】
根据点到直线的距离,垂线段最短进行求解即可.
【详解】
解:∵点到直线的距离,垂线段最短,
∴从人行横道线上的点P处过马路,线路最短的是PC,
故答案为:PC.
【点睛】
本题主要考查了点到直线的距离,解题的关键在于能够熟练掌握点到直线的距离垂线段最短.
4、 相等 ∠2
【解析】
略
5、60°##60度
【解析】
【分析】
设∠BAF=x°,∠BCF=y°,由题意知∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,如图,过点B作BM∥AD,过点F作FN∥AD,由AD∥CE可得AD∥FN∥BM∥CE,有∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,ABM=∠BAH=2x°,∠CBM=∠GCB=y°,∠AFC=(x+2y)°,∠ABC=(2x+y)°由于∠F的余角等于2∠B的补角,可知90﹣(x+2y)=180﹣2(2x+y),进行求解可得x的值,进而可求出∠BAH的值.
【详解】
解:设∠BAF=x°,∠BCF=y°
∵∠BCF=∠BCG,CF与∠BAH的平分线交于点F
∴∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,
如图,过点B作BM∥AD,过点F作FN∥AD
∵AD∥CE
∴AD∥FN∥BM∥CE
∴∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,∠ABM=∠BAH=2x°,∠CBM=∠GCB=y°
∴∠AFC=(x+2y)°,∠ABC=(2x+y)°
∵∠AFC的余角等于2∠ABC的补角
∴90﹣(x+2y)=180﹣2(2x+y)
解得:x=30
∴∠BAH=60°
故答案为:60°.
【点睛】
本题考查了角平分线,平行线的性质,余角、补角等知识.解题的关键在于正确的表示角度之间的数量关系.
三、解答题
1、见解析
【解析】
【分析】
由题意得到∠1=∠A,再根据同位角相等,两直线平行即可得解.
【详解】
证明:,,
,
.
【点睛】
本题考查平行线的判定,熟记同位角相等,两直线平行是解题的关键.
2、55°
【解析】
【分析】
由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.
【详解】
解:∵∠AOD=70°,
∴∠COB=∠AOD=70°,
∵OE平分∠BOC,
∴∠EOB=∠EOC=35°,
∵∠FOE=90°,
∴∠AOF=180°-∠EOB-∠FOE=55°.
【点睛】
本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.
3、 (1)见解析
(2)见解析
(3)OP=PM
【解析】
【分析】
(1)在∠AOB内部作射线OM,满足∠AOM=∠BOM即可;
(2)作即可;
(3)分别测量OP及PM,即可得到两条线段的数量关系.
(1)
解:如图,是所画的角平分线,
(2)
解:如图,直线即为所画的直线,
(3)
解:经测量得OP=2.6cm,PM=2.6cm,
∴OP=PM.
【点睛】
此题考查了作角的平分线,平行线的作图,测量法比较两条线段的大小关系,正确作出角的平分线及线段的平行线是解题的关键.
4、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
【解析】
【分析】
基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
【详解】
解:基础问题:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(平行于同一条直线的两条直线平行),
∵MN∥AB,
∴∠A=∠AGM(两直线平行,内错角相等),
∵MN∥CD,
∴∠D=∠DGM(两直线平行,内错角相等),
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
类比探究:如图所示,过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD,
∵MN∥AB,
∴∠A=∠AGM,
∵MN∥CD,
∴∠D=∠DGM,
∴∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
又∵AB∥CD,
∴MN∥CD,PQ∥CD
∵MN∥AB,PQ∥AB,
∴∠BAG=∠AGM,∠BAH=∠AHP,
∵MN∥CD,PQ∥CD,
∴∠CDG=∠DGM,∠CDH=∠DHP,
∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
∴∠GDH=44°,∠DHP=22°,
∴∠CDG=66°,∠AHP=54°,
∴∠DGM=66°,∠BAH=54°,
∵AH平分∠BAG,
∴∠BAG=2∠BAH=108°,
∴∠AGM=108°,
∴∠AGD=∠AGM-∠DGM=42°.
【点睛】
本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
5、垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行
【解析】
【分析】
根据垂直定义得出,求出,根据平行线的判定推出即可.
【详解】
解:因为(已知),
所以(垂直的定义),
同理.
所以(等量代换),
即.
因为(已知),
所以(等式的性质,
所以(内错角相等,两直线平行).
故答案为:垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行
【点睛】
本题考查了垂直定义和平行线的判定的应用,熟练掌握平行线的判定是解题关键.
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共25页。试卷主要包含了下列说法正确的有等内容,欢迎下载使用。
数学七年级下册第七章 相交线与平行线综合与测试习题: 这是一份数学七年级下册第七章 相交线与平行线综合与测试习题,共23页。试卷主要包含了下列语句正确的个数是,如图,点A,有下列说法等内容,欢迎下载使用。
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试练习题: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试练习题,共23页。试卷主要包含了如图,下列条件中能判断直线的是等内容,欢迎下载使用。