初中数学第七章 相交线与平行线综合与测试练习题
展开冀教版七年级下册第七章相交线与平行线同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,直线b、c被直线a所截,则与是( )
A.对顶角 B.同位角 C.内错角 D.同旁内角
2、在下列汽车标志的图案中,能用图形的平移来分析其形成过程的是( )
A. B.
C. D.
3、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
4、下列说法正确的有( )
①两点之间的所有连线中,线段最短;
②相等的角叫对顶角;
③过一点有且只有一条直线与已知直线平行;
④过一点有且只有一条直线与已知直线垂直;
⑤两点之间的距离是两点间的线段;
⑥在同一平面内的两直线位置关系只有两种:平行或相交.
A.1个 B.2个 C.3个 D.4个
5、如图,不能推出a∥b的条件是( )
A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°
6、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )
A.S1>S2 B.S1=S2 C.S1<S2 D.不确定
7、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )
A.3.5 B.4 C.5 D.5.5
8、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
9、下列A、B、C、D四幅图案中,能通过平移图案得到的是( )
A. B.
C. D.
10、如图,已知直线,相交于O,平分,,则的度数是( )
A. B. C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,A、B、C为直线l上的点,D为直线l外一点,若,则的度数为______.
2、如图,AB∥CD,M在AB上,N在CD上,求∠1+∠2+∠3+∠4=_______.
3、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°.
4、垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的______,它们的交点叫做______.
5、太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关.如图,从点照射到抛物线上的光线,等反射以后沿着与平行的方向射出.图中如果,,则________,________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知射线AB与直线CD交于点O,OF平分∠BOC,AE∥DC,且∠A=70°,求∠DOF.
2、如图,方格纸中每个小正方形的边长都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).
(1)在图①中,过点P画出AB的平行线,过P点画出表示点P到直线AB距离的垂线段;
(2)在图②中,以线段AB、CD、EF的长为边长的三角形的面积等于 .
3、请把下列证明过程及理由补充完整(填在横线上):
已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.
证明:∵AD∥BC(已知),
∴∠3= ( ).
∵∠3=∠4(已知),
∴∠4= ( ).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF( ).
即∠BAF= .
∴∠4=∠BAF.( ).
∴AB∥CD( ).
4、如图①是我省同金电力科技有限公司生产的美利达自行车的实物图,图②是它的部分示意图,,点B在AF上,,,.
(1)图中以点A为顶点的角有哪几个?请分别写出来.
(2)试求和的度数.
5、如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程.
(1)∵∠1=∠2(已知)
∴ CD( )
∴∠ABD+∠CDB = ( )
(2)∵∠BAC =65°,∠ACD=115°,( 已知 )
∴∠BAC+∠ACD=180° (等式性质)
∴ABCD ( )
(3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)
∴∠ABD=∠CDF=90°( 垂直的定义)
∴ (同位角相等,两直线平行)
又∵∠BAC=55°,(已知)
∴∠ACD = ( )
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
【详解】
∠1与∠2是同位角
故选:B
【点睛】
本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
2、C
【解析】
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:A.不是由“基本图案”经过平移得到,故此选项不合题意;
B.不是由“基本图案”经过平移得到,故此选项不合题意;
C.是由“基本图案”经过平移得到,故此选项符合题意;
D.不是由“基本图案”经过平移得到,故此选项不合题意;
故选:C.
【点睛】
本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.
3、D
【解析】
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
4、B
【解析】
【分析】
根据所学的相关知识,逐一判断即可.
【详解】
解:①两点之间的所有连线中,线段最短,故①说法正确.
②相等的角不一定是对顶角,故②说法错误.
③经过直线外一点有且只有一条直线与已知直线平行,故③说法错误.
④同一平面内,过一点有且只有一条直线与已知直线垂直,故④说法错误.
⑤两点之间的距离是两点间的线段的长度,故⑤说法错误.
⑥在同一平面内,两不重合的直线的位置关系只有两种:相交和平行,故⑥说法正确.
综上所述,正确的结论有2个.
故选:.
【点睛】
本题主要考查对平行线的定义,两点间的距离,相交线等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.
5、B
【解析】
【分析】
根据平行线的判定方法,逐项判断即可.
【详解】
解:、和是一对内错角,当时,可判断,故不符合题意;
、和是邻补角,当时,不能判定,故符合题意;
、和是一对同位角,当时,可判断,故不合题意;
、和是一对同旁内角,当时,可判断,故不合题意;
故选B.
【点睛】
本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
6、B
【解析】
【分析】
由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.
【详解】
解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
故选:B.
【点睛】
本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.
7、D
【解析】
【分析】
直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.
【详解】
∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.
∵AB=3,
∴AC=5,
∴3≤AP≤5,
故AP不可能是5.5,
故选:D.
【点睛】
本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.
8、A
【解析】
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
9、D
【解析】
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
【详解】
解:由平移的性质可知,不改变图形的形状、大小和方向,只有D选项符合要求,
故选:D.
【点睛】
本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.
10、C
【解析】
【分析】
先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
【详解】
解:∵OA平分∠EOC,∠EOC=100°,
∴∠AOC=∠EOC=50°,
∴∠BOC=180°﹣∠AOC=130°.
故选:C.
【点睛】
本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
二、填空题
1、60°##60度
【解析】
【分析】
由邻补角的定义,结合,可得答案.
【详解】
解:
故答案为:
【点睛】
本题考查的是邻补角的定义,掌握“互为邻补角的两个角的和为”是解本题的关键.
2、540°
【解析】
【分析】
首先过点E、F作EG、FH平行于AB,根据两直线平行,同旁内角互补,即可求得答案.
【详解】
如图,过点E、F作EG、FH平行于AB,
∵AB∥CD,
∵AB∥EG∥FH∥CD,
∴∠1+∠MEG=180°,∠GEF+∠EFH=180°,∠HFN+∠4=180°,
∴∠1+∠MEF+∠EFN+∠4=540°,
故答案为:540°.
【点睛】
此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.
3、120
【解析】
【分析】
由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.
【详解】
解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,
∴∠BOC=120°.
故答案为:120.
【点睛】
本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.
4、 垂线 垂足
【解析】
略
5、 45°##45度 112°##45度
【解析】
【分析】
由平行线的性质即可得出,.
【详解】
由题意知AB//PQ//CD
∴
∴
故答案为:45°,112°
【点睛】
本题考查了平行线的性质,两直线平行,同位角相等、内错角相等、同旁内角互补.
三、解答题
1、145°
【解析】
【分析】
根据平行线的性质,两直线平行,同位角相等可得∠A=∠BOC=70°,由角平分线的性质可得∠BOF=∠FOC=35°,再根据平角的性质即可得出答案.
【详解】
解:∵AE∥DC,
∴∠A=∠BOC=70°,
又∵OF平分∠BOC,
∴∠BOF=∠FOC=35°,
∴∠DOF=180°-∠FOC=180°-35°=145°.
【点睛】
本题主要考查了平行线的性质、邻补角的概念等,熟练应用平行线的性质进行求解是解决本题的关键.
2、 (1)见解析
(2)4
【解析】
【分析】
(1)直接利用网格结合勾股定理得出答案;
(2)利用平移的性质得出以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积,进而得出答案.
(1)
解:如图①所示:MN∥AB,PD⊥AB;
,
(2)
解:如图②所示:
以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积为:
3×4-×1×2-×2×3-×2×4=4.
故答案为:4.
【点睛】
本题主要考查了应用设计与作图,正确平移线段是解题关键.
3、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
【解析】
【分析】
根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
【详解】
证明:∵AD∥BC(已知),
∴∠3=∠CAD(两直线平行,内错角相等).
∵∠3=∠4(已知),
∴∠4=∠CAD(等量代换).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF(等式的性质).
即∠BAF=∠CAD.
∴∠4=∠BAF.(等量代换).
∴AB∥CD(同位角相等,两直线平行).
【点睛】
本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
4、 (1)3个, ;
(2);
【解析】
【分析】
(1)根据题意写出即可;
(2)根据两直线平行,内错角相等即可求解.
(1)
3个, ;
(2)
∵,
∴ ,
∵,
∴ ,
∵,,
∴ ,
∵,
∴ ,
∴ .
【点睛】
本题考查角的概念及平行线的性质,解题关键是掌握两直线平行,内错角相等.
5、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.
【解析】
【分析】
(1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;
(2)由题意直接依据同旁内角互补,两直线平行进行分析即可;
(3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.
【详解】
解:(1)∵∠1=∠2 (已知)
∴AB∥CD(内错角相等,两直线平行)
∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)
故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;
(2)∵∠BAC =65°,∠ACD=115°,(已知)
∴∠BAC+∠ACD=180° (等式性质 )
∴AB∥CD (同旁内角互补,两直线平行)
故答案为:同旁内角互补,两直线平行;
(3)∵CD⊥AB于D,EF⊥AB于F ,∠BAC=55°,(已知)
∴∠ABD=∠CDF=90°(垂直的定义)
∴AB ∥CD(同位角相等,两直线平行)
又∵∠BAC=55°,(已知)
∴∠ACD = 125°.(两直线平行,同旁内角互补)
故答案为:AB;CD;125°;两直线平行,同旁内角互补.
【点睛】
本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课堂检测: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课堂检测,共23页。试卷主要包含了下列说法正确的有等内容,欢迎下载使用。
2020-2021学年第七章 相交线与平行线综合与测试当堂检测题: 这是一份2020-2021学年第七章 相交线与平行线综合与测试当堂检测题,共25页。试卷主要包含了如图,直线AB,下列说法正确的是,如图,直线a等内容,欢迎下载使用。
初中冀教版第七章 相交线与平行线综合与测试练习: 这是一份初中冀教版第七章 相交线与平行线综合与测试练习,共24页。试卷主要包含了下列说法错误的是,如图,直线AB等内容,欢迎下载使用。