初中数学冀教版七年级下册第七章 相交线与平行线综合与测试当堂达标检测题
展开冀教版七年级下册第七章相交线与平行线定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的(如图).下面四个图案中,可以通过平移图案得到的是( )
A. B. C. D.
2、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
3、下列说法中,错误的是( )
A.两点之间线段最短
B.若AC=BC,则点C是线段AB的中点
C.过直线外一点有且只有一条直线与已知直线平行
D.平面内过直线外一点有且只有一条直线与已知直线垂直
4、如图,下列给定的条件中,不能判定的是( )
A. B. C. D.
5、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )
A.30° B.40° C.50° D.60°
6、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )
A.两点之间,线段最短
B.两点之间,直线最短
C.两点确定一条直线
D.直线外一点与直线上各点连接的所有线段中,垂线段最短
7、如图,l1∥l2,l3∥l4,与∠α互补的是( )
A.∠1 B.∠2 C.∠3 D.∠4
8、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )
A.30° B.45° C.60° D.75°
9、如图,将木条a,b与c钉在一起,∠1=100°,∠2=60°.要使木条a与b平行,木条a顺时针旋转的度数至少是( )
A.10° B.20° C.30° D.40°
10、下列A、B、C、D四幅图案中,能通过平移图案得到的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线、被直线、所截,如果,,那么度数为_______.
2、太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关.如图,从点照射到抛物线上的光线,等反射以后沿着与平行的方向射出.图中如果,,则________,________.
3、已知,直线AB,CD相交于点O,∠AOC=70°,过点O作射线OE,使∠BOE=130°,则∠COE=_____.
4、数学课上,老师要求同学们利用三角板画两条平行线.如图,小华的画法;①将含角三角尺的最长边与直线重合,用虚线作出一条最短边所在直线;②再次将含角三角尺的最短边与虚线重合,画出最长边所在直线,则.你认为他画图的依据是__.
5、如图所示方式摆放纸杯测量角的基本原理是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图直线,直线与分别和交于点交直线b于点C.
(1)若,直接写出 ;
(2)若,则点B到直线的距离是 ;
(3)在图中直接画出并求出点A到直线的距离.
2、如图,方格纸中每个小正方形的边长都是1.
(1)过点P画,PM与直线AB相交于点M;
(2)若点N在图中的格点上(不与点A重合),且直线NA与直线AC垂直,这样的格点(图中)有______个;
(3)连接PB、PC,则四边形PBAC的面积是______.
3、已知一角的两边与另一个角的两边分别平行,试探索这两个角之间的关系,并说明你的结论.
(1)如图1所示,,,则与的关系是 ;
(2)如图2所示,,,则与的关系是 ;
(3)经过上述探索,我们可以得到一个结论(试用文字语言表述): ;
(4)若两个角的两边分别平行,且一个角比另一个角的倍少,则这两个分别是多少度?
4、完成下面推理填空:已知:如图,△ABC中,点D是AB上一点,点E是AC上一点,点F是BC延长线上一点,连接CD,DE,EF,若∠1=∠F,CD∥EF,求证:∠EDB+∠ABC=180°.
证明:∵CD∥EF(已知),
∴∠F=∠BCD( ),
∵∠1=∠F(已知),
∴ = ( ),
∴ ∥ ( ),
∴∠EDB+∠ABC=180°( ).
5、如图,在ABC中,DEAC,DFAB.
(1)判断∠A与∠EDF之间的大小关系,并说明理由.
(2)求∠A+∠B+∠C的度数.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据平移只改变图形的位置不改变图形的形状和大小解答.
【详解】
解:能通过平移得到的是A选项图案.
故选:A
【点睛】
本题考查了利用平移设计图案,熟记平移变换只改变图形的位置不改变图形的形状并准确识图是解题的关键.
2、D
【解析】
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
3、B
【解析】
【分析】
根据线段公理可判断A,根据点C与线段AB的位置关系可判断B,根据平行公理可判断C,根据垂线公理可判断D即可.
【详解】
A. 两点之间线段最短,正确,故选项A不合题意;
B. 若AC=BC,点C在线段AB外和线段AB上两种情况,当点C在线段AB上时,则点C是线段AB的中点,当点C不在线段AB上,则点C不是线段AB中点,不正确,故选项B符合题意;
C. 过直线外一点有且只有一条直线与已知直线平行,正确,故选项C不合题意;
D. 平面内过直线外一点有且只有一条直线与已知直线垂直,正确,故选项D不合题意.
故选B.
【点睛】
本题考查基本事实即公理,和线段的中点,掌握基本事实即公理,和线段的中点是解题关键.
4、A
【解析】
【分析】
根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
【详解】
解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
故选A.
【点睛】
本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
5、B
【解析】
【分析】
由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.
【详解】
解:如图所示:
∵∠1=50°,∠ACB=90°,
∴∠BCD=180°﹣∠1﹣∠BCD=40°,
∵a∥b,
∴∠2=∠BCD=40°.
故选:B.
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
6、D
【解析】
【分析】
根据垂线段最短即可完成.
【详解】
根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确
故选:D
【点睛】
本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.
7、D
【解析】
【分析】
如图,先证明再证明 可得 再利用邻补角的定义可得答案.
【详解】
解:如图,
所以与∠α互补的是
故选D
【点睛】
本题考查的是平行线的性质,邻补角的定义,掌握“两直线平行,同位角相等”是解本题的关键.
8、D
【解析】
【分析】
由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.
【详解】
解:∵AC平分∠BAD,∠BAD=90°,
∴∠BAC=45°
∵BD∥AC,
∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,
∵∠CBD=∠ABD+∠ABC=45°+60°=105°,
∴∠1=75°,
故选D.
【点睛】
本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.
9、B
【解析】
【分析】
由平行线的性质可求解旋转后的∠1的对顶角为120°,将其与∠1的原角度相比较即可求解.
【详解】
解:如图,当时,∠2+∠3=180°
∵∠2=60°
∴∠3=120°
∵∠1=∠3
∴∠1=120°
∵现在木条a与木条c的夹角∠1=100°
∴木条a顺时针旋转的度数至少是120°﹣100°=20°
故选:B.
【点睛】
本题考查了对顶角,平行线的性质.解题的关键在于确定角度之间的数量关系.
10、D
【解析】
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
【详解】
解:由平移的性质可知,不改变图形的形状、大小和方向,只有D选项符合要求,
故选:D.
【点睛】
本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.
二、填空题
1、##75度
【解析】
【分析】
求出,根据平行线的判定得出直线直线,根据平行线的性质得出即可.
【详解】
解:,
,
,
直线直线,
,
故答案为:.
【点睛】
本题考查了平行线的判定和性质,能求出直线直线是解此题的关键.
2、 45°##45度 112°##45度
【解析】
【分析】
由平行线的性质即可得出,.
【详解】
由题意知AB//PQ//CD
∴
∴
故答案为:45°,112°
【点睛】
本题考查了平行线的性质,两直线平行,同位角相等、内错角相等、同旁内角互补.
3、20°或120°
【解析】
【分析】
如图,当OE在AB的上面时,根据邻补角的定义得到∠BOC=180°−∠AOC=180°−70°=110°,于是得到∠COE=∠BOE−∠BOC=130°−11°=20°;当OE在直线AB的下面时,根据邻补角的定义得到∠BOC=180°−∠AOC=180°−70°=110°,于是得到∠COE′=180°−∠DOE′=180°−60°=120°.
【详解】
如图,
当OE在AB的上面时,
∵∠AOC=70°,
∴∠BOC=180°﹣∠AOC=180°﹣70°=110°,
∵∠BOE=130°,
∴∠COE=∠BOE﹣∠BOC=130°﹣11°=20°;
当OE在直线AB的下面时,
∵∠AOC=70°,
∴∠BOC=180°﹣∠AOC=180°﹣70°=110°,
∵∠BOD=∠AOC=70°,
∴∠DOE′=∠BOE′﹣∠BOD=130°﹣70°=60°,
∴∠COE′=180°﹣∠DOE′=180°﹣60°=120°,
综上所述,∠COE=20°或120°,
故答案为:20°或120°.
【点睛】
本题考查了对顶角,邻补角.解题的关键是采用形数结合的方法分情况讨论.
4、内错角相等,两直线平行
【解析】
【分析】
根据画图的步骤,2个60°的角是内错角,根据平行线的判定即可求得答案
【详解】
解:画图的依据是内错角,相等两直线平行.
故答案为:内错角相等,两直线平行
【点睛】
本题考查了画平行线,掌握平行线的判定定理是解题的关键.
5、对顶角相等
【解析】
【分析】
利用对顶角的定义进行求解即可.
【详解】
图中的测量角的原理是:对顶角相等.
故答案为:对顶角相等.
【点睛】
本题考查了对顶角,解题的关键是理解清楚对顶角的定义.
三、解答题
1、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
【解析】
【分析】
(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
【详解】
解:(1)∵,
∴,
∵,,
∴,
故答案为:;
(2)∵,
∴点B到直线AC的距离为线段,
故答案为:4;
(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,
∵,
∴为直角三角形,
∴,
即,
解得:,
∴点A到直线BC的距离为.
【点睛】
题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.
2、(1)见解析;(2)3个;(3)10.5
【解析】
【分析】
(1)直接利用网格结合平行线的判定方法得出答案;
(2)利用数形结合的思想画出图形即可;
(3)利用四边形PBAC所在矩形减去周围三角形面积得出答案.
【详解】
解:(1)如图所示:
(2)这样的格点N共有3个,如图所示,
故答案为:3.
(3)四边形PBAC的面积为:3×7-×1×2-×5×2-×1×5-×2×2=10.5.
【点睛】
本题主要考查了应用设计与作图,正确借助网格分析是解题关键.
3、(1);(2);(3)一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补;(4),
【解析】
【分析】
(1)根据两直线平行,同位角相等,可求出∠1=∠2;
(2)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠2=180°;
(3)由(1)(2)可得出结论;
(4)由(3)可列出方程,求出角的度数.
【详解】
解:(1)如图1.
,
.
,
.
.
故答案为:.
(2),
.
,
.
.
故答案为:.
(3)由(1)、(2)得:一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补.
(4)这两个角分别是、,且.
,
.
.
.
这两个角分别为、.
图1 图2
【点睛】
本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.
4、两直线平行,同位角相等;∠1,∠BCD,等量代换;DE,BC,内错角相等,两直线平行;两直线平行,同旁内角互补
【解析】
【分析】
根据平行线的判定与性质进行填空即可的得出答案.
【详解】
证明:∵CD∥EF(已知),
∴∠F=∠DCD(两直线平行,同位角相等),
∵∠1=∠F(已知),
∴∠1=∠BCD(等量代换),
∴DE∥BC(内错角相等,两直线平行),
∴∠EDB+∠ABC=180°(两直线平行,同旁内角互补).
故答案为:两直线平行,同位角相等;∠1,∠BCD,等量代换;DE,BC,内错角相等,两直线平行;两直线平行,同旁内角互补.
【点睛】
本题考查平行线的判定与性质,熟知平行线的判定与性质是解答的关键.
5、(1)两角相等,见解析;(2)180°
【解析】
【分析】
(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
【详解】
(1)两角相等,理由如下:
∵DE∥AC,
∴∠A=∠BED(两直线平行,同位角相等).
∵DF∥AB,
∴∠EDF=∠BED(两直线平行,内错角相等),
∴∠A=∠EDF(等量代换).
(2)∵DE∥AC,
∴∠C=∠EDB(两直线平行,同位角相等).
∵DF∥AB,
∴∠B=∠FDC(两直线平行,同位角相等).
∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°(等量代换).
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
初中冀教版第七章 相交线与平行线综合与测试巩固练习: 这是一份初中冀教版第七章 相交线与平行线综合与测试巩固练习,共25页。试卷主要包含了如图,点P是直线m外一点,A,下列说法中正确的有等内容,欢迎下载使用。
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课堂检测: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课堂检测,共21页。试卷主要包含了如图,下列条件中不能判定的是,下列命题是真命题的是,下列命题中,是假命题的是等内容,欢迎下载使用。
初中冀教版第七章 相交线与平行线综合与测试习题: 这是一份初中冀教版第七章 相交线与平行线综合与测试习题,共21页。试卷主要包含了下列命题是真命题的是,如图,直线b等内容,欢迎下载使用。