冀教版七年级下册第七章 相交线与平行线综合与测试巩固练习
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试巩固练习,共21页。试卷主要包含了直线等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图所示,AB∥CD,若∠2=2∠1﹣6°,则∠2等于( )A.116° B.118° C.120° D.124°2、下列说法错误的是( )A.经过两点,有且仅有一条直线B.平面内过一点有且只有一条直线与已知直线垂直C.两点之间的所有连线中,线段最短D.平面内过一点有且只有一条直线与已知直线平行3、下列命题不正确的是( )A.直角三角形的两个锐角互补 B.两点确定一条直线C.两点之间线段最短 D.三角形内角和为180°4、如图,若AB∥CD,CD∥EF,那么BCE=( )A.180°-2+1 B.180°-1-2 C.2=21 D.1+25、如图,①,②,③,④可以判定的条件有( ).A.①②④ B.①②③ C.②③④ D.①②③④6、如图,下列条件中,不能判断∥的是( )A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠47、一把直尺与一块直角三角板按下图方式摆放,若,则( )A.52° B.53° C.54° D.63°8、下列各图中,∠1与∠2是对顶角的是( )A. B.C. D.9、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠510、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A.1 B.2 C.3 D.4第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、将一把直尺和一块含30°角的直角三角板按如图所示方式摆放,其中∠CBD=90°,∠BDC=30°,若∠1=78°,则∠2的度数为________.2、如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=40°,则∠CON的度数为___.3、如图,直线AB、CD相交于点O,∠AOD=100°,那么∠BOD=______.4、如图所示的网格是正方形网格,A,B,C,D是网格线的交点.我们晓观数学发现△ABD的面积与△ABC的面积相等,则这样的点D(不包含C)共有___个.5、下列说法:①对顶角相等;②两点之间的线段是两点间的距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤一个锐角的补角一定比它的余角大90°,正确的有______.(填序号)三、解答题(5小题,每小题10分,共计50分)1、如图,已知AB∥CD,AD和BC交于点O,E为OC上一点,F为CD上一点,且∠CEF+∠BOD=180°.说明∠EFC=∠A的理由.2、如图,已知AE平分∠BAC交BC于点E,AF平分∠CAD交BC的延长线于点F,∠B=64°,∠EAF=58°,试判断AD与BC是否平行.解:∵AE平分∠BAC,AF平分∠CAD(已知),∴∠BAC=2∠1,∠CAD= ( ).又∵∠EAF=∠1+∠2=58°,∴∠BAD=∠BAC+∠CAD=2(∠1+∠2)= °(等式性质).又∵∠B=64°(已知),∴∠BAD+∠B= °.∴ ( ).3、已知:如图,中,点、分别在、上,交于点, ,.(1)求证:;(2)若平分,,求的度数.4、如图,直线AB、CD相交于点O,射线OE在∠DOB内部,且.过O作OF⊥OE.若,(1)求∠BOE的度数(用含m的代数式表示);(2)若,试说明OB平分∠DOF.5、请把下列证明过程及理由补充完整(填在横线上):已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3= ( ).∵∠3=∠4(已知),∴∠4= ( ).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF( ).即∠BAF= .∴∠4=∠BAF.( ).∴AB∥CD( ). -参考答案-一、单选题1、B【解析】【分析】由AB与CD平行,利用两直线平行同旁内角互补得到∠2+∠3=180°,由对顶角相等得到∠1=∠3,等量代换得到∠1=180°-∠2,再代入∠2=2∠1﹣6°,即可求出∠2的度数.【详解】解:如图:∵AB∥CD,∴∠2+∠3=180°,∴∠3=180°-∠2,∵∠1=∠3,∴∠1=180°-∠2,∴∠2=2(180°-∠2)﹣6°,∴∠2=118°,故选:B.【点睛】此题考查了对顶角性质和平行线的性质,掌握两直线平行同旁内角互补是解答此题的关键.2、D【解析】【分析】根据垂线的性质、线段的性质、直线的性质、平行公理判断下列选项.【详解】解:由垂线的性质、线段的性质、直线的性质可知、、正确;A、根据直线的性质可知选项正确,不符合题意;B、根据垂线的性质可知选项正确,不符合题意;C、根据线段的性质可知选项正确,不符合题意;D、由平行公理可知选项不正确,需要保证该点不在已知直线上,符合题意;故选:D.【点睛】本题主要考查了垂线的性质、线段的性质、直线的性质、平行公理,解题的关键是掌握相关的概念.3、A【解析】【分析】根据直角三角形两锐角互余可直接进行判断.【详解】解:A、直角三角形的两个锐角互补,是假命题,符合题意;B、两点确定一条直线,是真命题,不符合题意;C、两点之间线段最短,是真命题,不符合题意;D、三角形内角和为,是真命题,不符合题意;故选A.【点睛】本题考查了假命题的判断,解题的关键是熟练掌握直角三角形两锐角互余.4、A【解析】【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】∵AB∥CD,CD∥EF,∴∠1=∠BCD,∠ECD+∠2=180°,∴BCE=∠BCD+∠ECD=180°-2+1,故选A.【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.5、A【解析】【分析】根据平行线的判定定理逐个排查即可.【详解】解:①由于∠1和∠3是同位角,则①可判定;②由于∠2和∠3是内错角,则②可判定;③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;④①由于∠2和∠5是同旁内角,则④可判定;即①②④可判定.故选A.【点睛】本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.6、D【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:、,内错角相等,,故本选项错误,不符合题意;、,同位角相等,,故本选项错误,不符合题意;、,同旁内角互补,,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.7、B【解析】【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,,∴,∴,故选B.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.8、D【解析】略9、D【解析】【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.10、A【解析】【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.二、填空题1、18°##18度【解析】【分析】根据平角及已知条件可得,由平行线的性质可得,结合图形求解即可得.【详解】解:∵,,∴,∵四边形AEGH为矩形,∴,∴,∵,∴,故答案为:.【点睛】题目主要考查角度的计算及平行线的性质,理解题意,结合图形求角度是解题关键.2、50°##50度【解析】【分析】直接利用角平分线的性质得出∠AOM=∠MOC,进而利用垂直的定义得出∠CON的度数.【详解】解:∵射线OM平分∠AOC,∠AOM=40°,∴∠AOM=∠MOC=40°,∵ON⊥OM,∴∠CON的度数为:90°-40°=50°.故答案为:50°.【点睛】此题主要考查了垂线定义以及角平分线的性质,得出∠MOC的度数是解题关键.3、80°##80度【解析】【分析】根据邻补角的定义,即可解答.【详解】解:∵∠AOD+∠BOD=180°,∴∠BOD =180°-∠AOD=180°-100°=80°,故答案为:80°.【点睛】本题考查了邻补角的定义,如果两个角有一条公共边,其余两边互为反向延长线,那么这两个角互为邻补角,互为邻补角两个角的和等于180°.4、5【解析】【分析】一条直线有两条与之距离相等的直线,如图,在AB的左侧和右侧均作一条与AB距离大小为C到AB的距离的直线,直线与网格的交点即为所求.【详解】解:如图,连接CD∵△ABD的面积与△ABC的面积相等∴,可知在CD上与网格交的点均为D点又∵一条直线有两条与之距离相等的直线∴在AB的左侧作一条与AB平行的直线EF如图所示,EF与网格的交点也为D点∴满足条件的D点有5个故答案为5.【点睛】本题考查了平行的性质.解题的关键在于明确一条直线有两条与之距离相等的直线.5、①⑤【解析】【分析】根据对顶角、线段、直线、垂直的定义、平行线的性质及余补角的性质可直接进行求解.【详解】解:①对顶角相等,原说法正确;②两点之间的线段长度是两点间的距离,原说法错误;③过直线外一点有且只有一条直线与已知直线平行,原说法错误;④在同一平面内,过一点有且只有一条直线与已知直线垂直,原说法错误;⑤一个锐角的补角一定比它的余角大90°,原说法正确;综上所述:正确的有①⑤;故答案为①⑤.【点睛】本题主要考查对顶角、线段、直线、垂直的定义、平行线的性质及余补角的性质,熟练掌握相关概念及性质是解题的关键.三、解答题1、见解析【解析】【分析】由AB∥DC可得到∠A与∠D的关系,再由∠CEF+∠BOD=180°可得到∠CEF=∠COD,根据平行线的判定定理可得EF∥AD,可得∠D与∠EFC的关系,等量代换可得结论.【详解】证明:∵AB∥CD,∴∠A=∠D,∵∠CEF+∠BOD=180°,∠BOD+∠DOC=180°,∴∠CEF=∠DOC.∴EF∥AD.∴∠EFC=∠D,∵∠A=∠D,∴∠EFC=∠A.【点睛】本题考查了平行线的判定和性质,掌握平行线的性质和判定方法是解决本题的关键.2、2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行【解析】【分析】由AE平分∠BAC,AF平分∠CAD,利用角平分线的定义可得出∠BAC=2∠1,∠CAD=2∠2,结合∠EAF=∠1+∠2=58°可得出∠BAD=116°,由∠B=64°,∠BAD=116°,可得出∠BAD+∠B=180°,再利用“同旁内角互补,两直线平行”即可得出AD∥BC.【详解】解:∵AE平分∠BAC,AF平分∠CAD(已知),∴∠BAC=2∠1,∠CAD=2∠2(角平分线的定义).又∵∠EAF=∠1+∠2=58°,∴∠BAD=∠BAC+∠CAD=2(∠1+∠2)=116°(等式性质).又∵∠B=64°(已知),∴∠BAD+∠B=180°.∴AD∥BC(同旁内角互补,两直线平行).故答案为:2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行.【点睛】此题考查了角平分线的定义,角的计算,平行线的判定.正确掌握线段、角、相交线与平行线的知识是解题的关键,还需掌握推理能力.3、(1)见解析;(2)72°【解析】【分析】(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.【详解】解:(1)∵,∠2+∠DFE=180°,∴∠3=∠DFE,∴EF//AB,∴∠ADE=∠1,又∵,∴∠ADE=∠B,∴DE//BC,(2)∵平分,∴∠ADE=∠EDC,∵DE//BC,∴∠ADE=∠B,∵∴∠5+∠ADE+∠EDC==180°,解得:,∴∠ADC=2∠B=72°,∵EF//AB,∴∠2=∠ADC=180°-108°=72°,【点睛】本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4、 (1)(2)见解析【解析】【分析】(1)根据直角的性质,可得,从而得到,再由,即可求解;(2)根据,可得,再由,可得,从而得到,,即可求解.(1)解:∵,∴,∵直线AB、CD相交于点O,∴,∵,∴,∵,∴(2)解:∵且,∴,∵,∴,∴,,∴.∴OB平分.【点睛】本题主要考查了垂直的性质,角平分线的有关计算,熟练掌握垂直的性质,根据题意得到角与角之间的数量关系是解题的关键.5、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行【解析】【分析】根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.【详解】证明:∵AD∥BC(已知),∴∠3=∠CAD(两直线平行,内错角相等).∵∠3=∠4(已知),∴∠4=∠CAD(等量代换).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质).即∠BAF=∠CAD.∴∠4=∠BAF.(等量代换).∴AB∥CD(同位角相等,两直线平行).【点睛】本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
相关试卷
这是一份初中冀教版第七章 相交线与平行线综合与测试习题,共21页。试卷主要包含了下列命题是真命题的是,如图,直线b等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试一课一练,共22页。试卷主要包含了下列语句正确的个数是,下列说法中不正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共20页。试卷主要包含了有下列说法,生活中常见的探照灯等内容,欢迎下载使用。