初中数学第七章 相交线与平行线综合与测试同步训练题
展开
这是一份初中数学第七章 相交线与平行线综合与测试同步训练题,共24页。试卷主要包含了如图所示,直线l1∥l2,点A,有下列说法等内容,欢迎下载使用。
冀教版七年级数学下册第七章相交线与平行线综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、下列图形中,由∠1=∠2能得到ABCD的图形有( )个A.4 B.3 C.2 D.12、如图所示,AB∥CD,若∠2=2∠1﹣6°,则∠2等于( )A.116° B.118° C.120° D.124°3、如图,直线AB和CD相交于点O,若∠AOC=125°,则∠BOD等于( )A.55° B.125° C.115° D.65°4、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=( )A.62° B.58° C.52° D.48°5、如图,下列给定的条件中,不能判定的是( )A. B. C. D.6、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )A.S1>S2 B.S1=S2 C.S1<S2 D.不确定7、如图,①,②,③,④可以判定的条件有( ).A.①②④ B.①②③ C.②③④ D.①②③④8、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A.1 B.2 C.3 D.49、如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EFHC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①ADBC;②GK平分∠AGC;③∠DGH=37°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有( )A.4个 B.3个 C.2个 D.1个10、已知直线mn,如图,下列哪条线段的长可以表示直线与之间的距离( )A.只有 B.只有 C.和均可 D.和均可第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,给出下列条件:①;②;③;④.其中,能推出AD//BC的条件是 __.(填上所有符合条件的序号)2、如图,ADBC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是2,则△BOC的面积是 ___.3、在同一平面内有2021条直线a1,a2,a3,…,a2021,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a5的位置关系是_____;a1与a2021的位置关系是_____.4、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°. 5、如果两个角有一条公共边,它们的另一边互为____________,那么这两个角互为邻补角.图中∠1的邻补角有___________.三、解答题(5小题,每小题10分,共计50分)1、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.(1)如图①,若∠BEF=130°,则∠FGC= 度;(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.解:如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC( )又∵EM∥FG∴∠FGC=∠EMC( )∠EFG+∠FEM=180°( )即∠FGC=( )(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC= 即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.2、如图,直线AB、CD相交于点O,射线OE在∠DOB内部,且.过O作OF⊥OE.若,(1)求∠BOE的度数(用含m的代数式表示);(2)若,试说明OB平分∠DOF.3、如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)填空:1=_____°,2= _____°;(2)现把三角板绕B点逆时针旋转n°.如图2,当0<n<90,且点C恰好落在DG边上时,①请直接写出2=_____°(结果用含n的代数式表示)②若1与2怡好有一个角是另一个角的倍,求n的值(3)若把三角板绕B点顺时针旋转n°.当0<n<360时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.4、如图,已知ABCD,BE平分∠ABC,∠CDE = 150°,求∠C的度数.5、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数 -参考答案-一、单选题1、C【解析】【分析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此判断即可.【详解】解:第一个图形,∵∠1=∠2,∴AC∥BD;故不符合题意;第二个图形,∵∠1=∠2,∴AB∥CD,故符合题意;第三个图形,∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴AB∥CD;第四个图形,∵∠1=∠2不能得到AB∥CD,故不符合题意;故选:C.【点睛】本题考查了平行线的判定,解题的关键是注意平行线判定的前提条件必须是三线八角.2、B【解析】【分析】由AB与CD平行,利用两直线平行同旁内角互补得到∠2+∠3=180°,由对顶角相等得到∠1=∠3,等量代换得到∠1=180°-∠2,再代入∠2=2∠1﹣6°,即可求出∠2的度数.【详解】解:如图:∵AB∥CD,∴∠2+∠3=180°,∴∠3=180°-∠2,∵∠1=∠3,∴∠1=180°-∠2,∴∠2=2(180°-∠2)﹣6°,∴∠2=118°,故选:B.【点睛】此题考查了对顶角性质和平行线的性质,掌握两直线平行同旁内角互补是解答此题的关键.3、B【解析】【分析】根据对顶角相等即可求解.【详解】解:∵直线AB和CD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.4、A【解析】【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,∴,∴,故选:A.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.5、A【解析】【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.6、B【解析】【分析】由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.【详解】解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.故选:B.【点睛】本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.7、A【解析】【分析】根据平行线的判定定理逐个排查即可.【详解】解:①由于∠1和∠3是同位角,则①可判定;②由于∠2和∠3是内错角,则②可判定;③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;④①由于∠2和∠5是同旁内角,则④可判定;即①②④可判定.故选A.【点睛】本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.8、A【解析】【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.9、B【解析】【分析】根据平行线的判定定理得到AD∥BC,故①正确;由平行线的性质得到∠AGK=∠CKG,等量代换得到∠AGK=∠CGK,求得GK平分∠AGC;故②正确;根据题意列方程得到∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,得到∠AGK=α+β,根据角平分线的定义即可得到结论.【详解】解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;∵∠FGA的余角比∠DGH大16°,∴90°-∠FGA-∠DGH=16°,∵∠FGA=∠DGH,∴90°-2∠FGA=16°,∴∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,∴∠AGK=α+β,∵GK平分∠AGC,∴∠CGK=∠AGK=α+β,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+α=β+α+β,∴β=18.5°,∴∠MGK=18.5°,故④错误,故选:B.【点睛】本题考查了平行线的判定和性质,角平分线的定义,对顶角性质,一元一次方程,正确的识别图形是解题的关键.10、C【解析】【分析】由平行线之间的距离的定义判定即可得解.【详解】解:从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两条平行线之间的距离,线段和都可以示直线与之间的距离,故选:C.【点睛】本题考查了平行线之间的距离,解题的关键是熟记平行线之间的距离的概念.二、填空题1、②④##④②【解析】【分析】利用平行线的判定定理依次判断.【详解】①,;②,;③,;④,.故答案为:②④.【点睛】此题考查了平行线的判定定理,熟记平行线的判定定理并熟练应用是解题的关键.2、3【解析】【分析】根据平行可得:与高相等,即两个三角形的面积相等,根据图中三角形之间的关系即可得.【详解】解:∵,∴与高相等,∴,又∵,∴,故答案为:3.【点睛】题目主要考查平行线间的距离相等,三角形面积的计算等,理解题意,掌握平行线之间的距离相等是解题关键.3、 平行 平行【解析】【分析】根据平行线的性质和规律得到:4条直线的位置关系为一个循环.【详解】如图,a1⊥a2,a2∥a3,∴a1⊥a3,∵a3⊥a4,∴a1∥a4,∵a4∥a5,∴a1∥a5,…,依此类推,a1⊥a6,a1⊥a7,a1∥a8,a1∥a9,连续4条直线的位置关系为一个循环.∴2021=505×4+1,∴a1∥a2021.故答案是:平行;平行.【点睛】本题考查了平行线的性质,解题的关键是找到直线位置关系的规律.4、120【解析】【分析】由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.【详解】解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,∴∠BOC=120°.故答案为:120.【点睛】本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.5、 反向延长线 ∠2,∠3【解析】略三、解答题1、(1)40°;(2)见解析;(3)70°【解析】【分析】(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;(2)根据题目补充理由和相关结论即可;(3)类似(2)中的方法求解即可.【详解】解:(1)过点F作FN∥AB,∵FN∥AB,∠FEB=130°,∴∠EFN+∠FEB=180°,∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,∵∠EFG=90°,∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,∵AB∥CD,∴FN∥CD,∴∠FGC=∠NFG=40°.故答案为:40°;(2)如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC(两直线平行,内错角相等)又∵EM∥FG∴∠FGC=∠EMC(两直线平行,同位角相等)∠EFG+∠FEM=180°(两直线平行,同旁内角互补)即∠FGC=(∠BEM)(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC=90°故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°(3)过点E作EH∥FG,交CD于点H.∵AB∥CD∴∠BEH=∠EHC又∵EM∥FG∴∠FGC=∠EHC∠EFG+∠FEH=180°即∠FGC=∠BEH∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH又∵∠EFG=110°∴∠FEH=70°∴∠FEB﹣∠FGC=70°故答案为:70°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.2、 (1)(2)见解析【解析】【分析】(1)根据直角的性质,可得,从而得到,再由,即可求解;(2)根据,可得,再由,可得,从而得到,,即可求解.(1)解:∵,∴,∵直线AB、CD相交于点O,∴,∵,∴,∵,∴(2)解:∵且,∴,∵,∴,∴,,∴.∴OB平分.【点睛】本题主要考查了垂直的性质,角平分线的有关计算,熟练掌握垂直的性质,根据题意得到角与角之间的数量关系是解题的关键.3、(1)120°,90°;(2)①90°+n°;②n的值为或;(3)当n=30°时,AB⊥DG(EF);当n=90°时,BC⊥DG(EF),AC⊥DE(GF);当n=120°时,AB⊥DE(GF);当n=180°时,AC⊥DG (EF),BC⊥DE(GF);当n=210°时,AB⊥DG (EF);当n=270°时,BC⊥DG (EF),AC⊥DE(GF);当n=300°时,AB⊥DE (GF).【解析】【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,再分∠1=∠2和∠2=∠1分别求解即可;(3)结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°−60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵DG∥EF,∴∠BCG=180°−∠CBF=180°−n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°−∠ACB−∠BCG=360°−90°−(180°−n°)=90°+n°;故答案为:90°+n°;②∵∠ABC=60°,∴∠ABE=180°−60°−n°=120°−n°,∵DG∥EF,∴∠1=∠ABE=120°−n°,若∠1=∠2,则120°−n°=(90°+n°),解得n=;若∠2=∠1,则90°+n°=(120°−n°),解得n=;所以n的值为或;(3)当n=30°时,AB⊥DG(EF);当n=90°时,BC⊥DG(EF),AC⊥DE(GF);当n=120°时,AB⊥DE(GF);当n=180°时,AC⊥DG (EF),BC⊥DE(GF);当n=210°时,AB⊥DG (EF);当n=270°时,BC⊥DG (EF),AC⊥DE(GF);当n=300°时,AB⊥DE (GF).【点睛】本题考查了角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.4、∠C的度数为120°【解析】【分析】首先由∠CDE=150°和平角的概念得到∠CDB=30°;然后根据两直线平行,内错角相等得到∠ABD=∠CDB=30°,进而根据角平分线的定义求出∠ABC=60°,最后根据两直线平行,同旁内角互补即可求出∠C的度数.【详解】解:∵∠CDE=150°, ∴∠CDB=180°-∠CDE=30°, 又∵ABCD, ∴∠ABD=∠CDB=30°,∵BE平分∠ABC, ∴∠ABC=2∠ABD=60°, ∵ABCD, ∴∠C=180°-∠ABC=120°.【点睛】本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键.5、55°【解析】【分析】由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.【详解】解:∵∠AOD=70°,∴∠COB=∠AOD=70°,∵OE平分∠BOC,∴∠EOB=∠EOC=35°,∵∠FOE=90°,∴∠AOF=180°-∠EOB-∠FOE=55°.【点睛】本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.
相关试卷
这是一份数学七年级下册第七章 相交线与平行线综合与测试当堂达标检测题,共22页。试卷主要包含了如图所示,直线l1∥l2,点A,如图,直线AB,下列命题不正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题,共20页。试卷主要包含了下列各图中,和是对顶角的是,如图,直线AB,下列说法中正确的有,下列说法正确的有等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步测试题,共21页。试卷主要包含了下列说法正确的是,下列说法中不正确的是,下列命题不正确的是,下列命题中,是真命题的是等内容,欢迎下载使用。