初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步测试题
展开这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步测试题,共21页。试卷主要包含了下列说法正确的是,下列说法中不正确的是,下列命题不正确的是,下列命题中,是真命题的是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )
A.140° B.100° C.80° D.40°
2、如图,小华同学用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小( )
A.垂线段最短
B.经过一点有无数条直线
C.经过两点,有且仅有一条直线
D.两点之间,线段最短
3、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
4、下列说法正确的是( )
A.不相交的两条直线叫做平行线
B.过一点有且仅有一条直线与已知直线垂直
C.平角是一条直线
D.过同一平面内三点中任意两点,只能画出3条直线
5、下列说法中不正确的是( )
A.平面内,垂直于同一条直线的两直线平行
B.过一点有且只有一条直线与已知直线平行
C.平面内,过一点有且只有一条直线与已知直线垂直
D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离
6、下列命题不正确的是( )
A.直角三角形的两个锐角互补 B.两点确定一条直线
C.两点之间线段最短 D.三角形内角和为180°
7、如图,∠1=∠2,∠3=25°,则∠4等于( )
A.165° B.155° C.145° D.135°
8、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
9、下列命题中,是真命题的是( )
A.两直线平行,同旁内角相等 B.内错角相等,两直线平行
C.直角三角形的两锐角互补 D.三角形的一个外角大于任何一个内角
10、下列说法错误的是( )
A.经过两点,有且仅有一条直线
B.平面内过一点有且只有一条直线与已知直线垂直
C.两点之间的所有连线中,线段最短
D.平面内过一点有且只有一条直线与已知直线平行
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=40°,则∠CON的度数为___.
2、如图,,,有下列结论:①;②;③;④.其中正确的有______.(只填序号)
3、如图,∠C=90°,线段AB=10cm,线段AD=8cm,线段AC=6cm,则点A到BC的距离为_____cm.
4、如图,直线AB、CD相交于点O,射线OM平分∠AOC,若∠BOD=72°,则∠BOM=_________°.
5、如图,已知AB∥CD,∠ABC=120°,∠1=27°,则直线CB和CE的夹角是_____°.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,平分交于D,平分交于F,已知,求证:.
2、请你补全证明过程或推理依据:
已知:如图,四边形ABCD,点E、F分别在边CD两方的延长线上,连接FA,若∠2+∠3=180°,∠B=∠1.求证:∠4=∠F.
证明:∵点E在CD的延长线上(已知)
∴∠2+∠ =180°(平角定义)
又∵∠2+∠3=180°(已知)
∴∠3=∠ ( )
又∵∠B=∠1(已知)
∴∠B=∠ (等量代换)
∴ABFD( )
∴∠4=∠F( )
3、如图,已知AE平分∠BAC交BC于点E,AF平分∠CAD交BC的延长线于点F,∠B=64°,∠EAF=58°,试判断AD与BC是否平行.
解:∵AE平分∠BAC,AF平分∠CAD(已知),
∴∠BAC=2∠1,∠CAD= ( ).
又∵∠EAF=∠1+∠2=58°,
∴∠BAD=∠BAC+∠CAD
=2(∠1+∠2)
= °(等式性质).
又∵∠B=64°(已知),
∴∠BAD+∠B= °.
∴ ( ).
4、已知:如图,中,点、分别在、上,交于点, ,.
(1)求证:;
(2)若平分,,求的度数.
5、如图,直线AB、CD相交于点O,OE⊥CD.
(1)若∠BOD∶∠BOC=1∶4,求∠AOE的度数;
(2)在第一问的条件下,过点O作OF⊥AB,则∠EOF的度数为 .
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
【详解】
解:∵∠AOE+∠BOE=180°,
∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
又∵OE平分∠AOC,
∴∠AOE=∠COE=40°,
∴∠BOC=∠BOE﹣∠COE
=140°﹣40°
=100°,
故选:B.
【点睛】
本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
2、D
【解析】
【分析】
根据两点之间,线段最短解答即可.
【详解】
解:用剪刀沿虚线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.
故选:D.
【点睛】
本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.
3、A
【解析】
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
4、B
【解析】
【分析】
根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.
【详解】
解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;
过一点有且仅有一条直线与已知直线垂直,故选项B正确;
平角是角的两边在同一直线上的角,故选项C错误;
过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;
故选:B.
【点睛】
此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.
5、B
【解析】
【分析】
根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.
【详解】
A、平面内,垂直于同一条直线的两直线平行,故说法正确;
B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;
C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;
D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确.
故选:B
【点睛】
本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立.
6、A
【解析】
【分析】
根据直角三角形两锐角互余可直接进行判断.
【详解】
解:A、直角三角形的两个锐角互补,是假命题,符合题意;
B、两点确定一条直线,是真命题,不符合题意;
C、两点之间线段最短,是真命题,不符合题意;
D、三角形内角和为,是真命题,不符合题意;
故选A.
【点睛】
本题考查了假命题的判断,解题的关键是熟练掌握直角三角形两锐角互余.
7、B
【解析】
【分析】
设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
【详解】
解:设∠4的补角为,如下图所示:
∠1=∠2,
,
,
.
故选:B.
【点睛】
本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
8、D
【解析】
略
9、B
【解析】
【分析】
利用三角形的性质、平行线的性质和判定进行判断即可.
【详解】
解:两直线平行,同旁内角互补,故A是假命题;
内错角相等,两直线平行,故B是真命题;
直角三角形的两锐角互余,故C是假命题;
三角形的一个外角大于任何一个和它不相邻的内角,故D是假命题;
故答案为B.
【点睛】
本题考查的是命题的真假判断,熟练准确掌握基础知识是解答本题的关键.
10、D
【解析】
【分析】
根据垂线的性质、线段的性质、直线的性质、平行公理判断下列选项.
【详解】
解:由垂线的性质、线段的性质、直线的性质可知、、正确;
A、根据直线的性质可知选项正确,不符合题意;
B、根据垂线的性质可知选项正确,不符合题意;
C、根据线段的性质可知选项正确,不符合题意;
D、由平行公理可知选项不正确,需要保证该点不在已知直线上,符合题意;
故选:D.
【点睛】
本题主要考查了垂线的性质、线段的性质、直线的性质、平行公理,解题的关键是掌握相关的概念.
二、填空题
1、50°##50度
【解析】
【分析】
直接利用角平分线的性质得出∠AOM=∠MOC,进而利用垂直的定义得出∠CON的度数.
【详解】
解:∵射线OM平分∠AOC,∠AOM=40°,
∴∠AOM=∠MOC=40°,
∵ON⊥OM,
∴∠CON的度数为:90°-40°=50°.
故答案为:50°.
【点睛】
此题主要考查了垂线定义以及角平分线的性质,得出∠MOC的度数是解题关键.
2、①②④
【解析】
【分析】
由条件可先证明∠B=∠C,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.
【详解】
解:,
,,
又,
,
,
,
又,
,
故①②④正确,
由条件不能得出,故③不一定正确;
故答案为:①②④.
【点睛】
本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键.
3、6
【解析】
【分析】
根据点到直线的距离的定义,可得答案.
【详解】
解:因为∠C=90°,
所以AC⊥BC,
所以A到BC的距离是AC,
因为线段AC=6cm,
所以点A到BC的距离为6cm.
故答案为:6.
【点睛】
本题考查了点到直线的距离,明确定义是关键.
4、144
【解析】
【分析】
首先根据邻补角互补,对顶角相等可得∠AOC=72°,∠BOC=108°,再根据角平分线的性质可得∠MOC的度数,进而可得答案.
【详解】
解:∵∠BOD=72°,
∴∠AOC=72°,∠BOC=108°,
∵OM平分∠AOC,
∴∠MOC=36°,
∴∠BOM=∠BOC+∠MOC=144°.
故答案为:144.
【点睛】
本题主要考查了对顶角和邻补角,角平分线的定义,关键是掌握邻补角互补,对顶角相等.
5、93
【解析】
【分析】
AB∥CD,∠DCB=∠ABC=120°,将角度代入∠BCE=∠DCB -∠1求解即可.
【详解】
解:∵AB∥CD
∴∠DCB=∠ABC=120°
又∵∠1=27°
∴∠BCE=∠DCB -∠1=93°
故答案为93.
【点睛】
本题考查了平行线中关于内错角的性质.解题的关键在于熟练使用两直线平行,内错角相等的性质.
三、解答题
1、见解析
【解析】
【分析】
根据∠ADE=∠B可判定DE∥BC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EF∥CD.
【详解】
证明:(已知),
(同位角相等,两直线平行),
(两直线平行,同位角相等),
平分,平分(已知),
,(角平分线的定义),
(等量代换).
(同位角相等,两直线平行).
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.
2、见解析
【解析】
【分析】
证明∠4=∠F转化为证明AB∥FD.欲证AB∥CD,可证∠B=∠3.由题知∠B=∠1,转化为证明∠3=∠1.欲证∠3=∠1,可证AD∥BC.根据∠2+∠3=180°,∠2+∠1=180°,则可证AD∥BC.
【详解】
解:证明:∵点E在CD的延长线上(已知),
∴∠2+∠1=180°(平角定义).
又∵∠2+∠3=180°(已知),
∴∠3=∠1(同角的补角相等).
又∵∠B=∠1(已知),
∴∠B=∠3(等量代换).
∴AB∥FD(内错角相等,两直线平行).
∴∠4=∠F(两直线平行,内错角相等).
【点睛】
本题主要考查平行线的性质与判定以及同角的补角的相等,熟练掌握平行线的性质与判定是解题关键.
3、2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行
【解析】
【分析】
由AE平分∠BAC,AF平分∠CAD,利用角平分线的定义可得出∠BAC=2∠1,∠CAD=2∠2,结合∠EAF=∠1+∠2=58°可得出∠BAD=116°,由∠B=64°,∠BAD=116°,可得出∠BAD+∠B=180°,再利用“同旁内角互补,两直线平行”即可得出AD∥BC.
【详解】
解:∵AE平分∠BAC,AF平分∠CAD(已知),
∴∠BAC=2∠1,∠CAD=2∠2(角平分线的定义).
又∵∠EAF=∠1+∠2=58°,
∴∠BAD=∠BAC+∠CAD
=2(∠1+∠2)
=116°(等式性质).
又∵∠B=64°(已知),
∴∠BAD+∠B=180°.
∴AD∥BC(同旁内角互补,两直线平行).
故答案为:2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行.
【点睛】
此题考查了角平分线的定义,角的计算,平行线的判定.正确掌握线段、角、相交线与平行线的知识是解题的关键,还需掌握推理能力.
4、(1)见解析;(2)72°
【解析】
【分析】
(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;
(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.
【详解】
解:(1)∵,∠2+∠DFE=180°,
∴∠3=∠DFE,
∴EF//AB,
∴∠ADE=∠1,
又∵,
∴∠ADE=∠B,
∴DE//BC,
(2)∵平分,
∴∠ADE=∠EDC,
∵DE//BC,
∴∠ADE=∠B,
∵
∴∠5+∠ADE+∠EDC==180°,
解得:,
∴∠ADC=2∠B=72°,
∵EF//AB,
∴∠2=∠ADC=180°-108°=72°,
【点睛】
本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
5、(1);(2)或.
【解析】
【分析】
(1)先根据可求出,从而可得,再根据垂直的定义可得,然后根据即可得;
(2)先根据(1)的结果求出的度数,再根据垂直的定义可得,然后分①在直线的上方,②在直线的下方两种情况,根据角的和差即可得.
【详解】
解:(1),
,
,
,
,
;
(2)由(1)已得:,
,
,
,
由题意,分以下两种情况:
①如图,当在直线的上方时,
则;
②如图,当在直线的下方时,
则;
综上,的度数为或,
故答案为:或.
【点睛】
本题考查了邻补角、垂直,较难的是题(2),正确分两种情况讨论是解题关键.
相关试卷
这是一份数学七年级下册第七章 相交线与平行线综合与测试当堂达标检测题,共22页。试卷主要包含了如图所示,直线l1∥l2,点A,如图,直线AB,下列命题不正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题,共20页。试卷主要包含了下列各图中,和是对顶角的是,如图,直线AB,下列说法中正确的有,下列说法正确的有等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试巩固练习,共23页。试卷主要包含了下列说法中正确的有等内容,欢迎下载使用。