冀教版七年级下册第七章 相交线与平行线综合与测试精练
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试精练,共24页。
冀教版七年级下册第七章相交线与平行线同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠52、如图,一定能推出的条件是( )A. B. C. D.3、下列说法正确的是( )A.不相交的两条直线叫做平行线B.过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线4、如图,与交于点,与互余,,则的度数为( )A. B. C. D.5、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )A.140° B.100° C.80° D.40°6、下列各组图形中,能够通过平移得到的一组是( )A. B. C. D.7、如图所示,AB∥CD,若∠2=2∠1﹣6°,则∠2等于( )A.116° B.118° C.120° D.124°8、如图,下列四个选项中不能判断AD∥BC的是( )A. B.C. D.9、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°10、如图,如果将图中任意一条线段沿方格线的水平或竖直方向平移1格称为“1步”,那么通过平移要使图中的3条线段首尾相接组成一个三角形,最少需要( )A.4步 B.5步 C.6步 D.7步第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、(1)如图1,若直线m、n相交于点O,∠1=90°,则a______b;(2)若直线AB、CD相交于点O,且AB⊥CD,则∠BOD =______;(3)如图2,BO⊥AO,∠BOC与∠BOA的度数之比为1∶3,那么∠COA=___ ,∠BOC的补角为______.2、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的________.3、如图,已知DE∥BC,∠ABC=70°,那么直线AB与直线DE的夹角等于 ___度.4、如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要______米.5、完成下面的证明:看图填空:已知如图,于,于,,求证:平分.证明:于,于G(_____),,(_____).(_____).(_____)._____(_____),_____(_____).又(已知),(_____),平分(_____).三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABCD,BE平分∠ABC,∠CDE = 150°,求∠C的度数.2、阅读下面材料:小钟遇到这样一个问题:如图1,,请画一个,使与互补.小钟是这样思考的:首先通过分析明确射线在的外部,画出示意图,如图2所示;然后通过构造平角找到的补角,如图3所示;进而分析要使与互补,则需;因此,小钟找到了解决问题的方法:反向延长射线得到射线,利用量角器画出的平分线,这样就得到了与互补.(1)请参考小钟的画法;在图4中画出一个,使与互余.并简要介绍你的作法;(2)已知和互余,射线在的内部,且比大,请用表示的度数.3、如图,已知点A,B,C,D是不在同一直线上的四个点,请按要求画出图形.(1)画直线AB和射线CB;(2)连接AC,过点C画直线AB的垂线,垂足为E;(3)在直线AB上找一点P,连接PC、PD,使的和最短.4、如图,在方格纸中,每个小正方形的边长为一个长度单位,点A、B、C都在格点上.(1)画出线段BC;(2)将线段BC向上平移三个单位,得到线段DE,在图中画出线段DE;(3)三角形ADE的面积= .5、如图,已知AB∥CD,BE平分∠ABC,DB平分∠CDF,且∠ABC+∠CDF=180°.求证:BE⊥DB.证明:∵AB∥CD∴∠ABC=∠BCD( )∵∠ABC+∠CDF=180°( )∴∠BCD+∠CDF=180°( )∴BC∥DF( )于是∠DBC=∠BDF( )∵BE平分∠ABC,DB平分∠CDF∴∠EBC=∠ABC,∠BDF= ( )∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF)即∠EBD= ∴BE⊥DB( ) -参考答案-一、单选题1、D【解析】【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.2、D【解析】【分析】平行线的判定方法有:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行;根据平行线的判定方法逐一判定即可.【详解】解:A.和是直线和被直线所截所成的内错角,不能推出,故本选项不符合题意;B.和是直线和被直线所截所成的内错角,不能推出,故本选项不符合题意;C.和是直线和被直线所截所成的内错角,但不能判定,不能判定,和是直线和被直线所截所成的同位角,但不能判定,不能判定,不能推出,故本选项不符合题意;D.和是直线和被直线所截所成的同位角,能推出,故本选项符合题意;故选:D.【点睛】本题主要考查了平行线的判定,熟记同位角相等,两直线平行是解决问题的关键.3、B【解析】【分析】根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.【详解】解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;过一点有且仅有一条直线与已知直线垂直,故选项B正确;平角是角的两边在同一直线上的角,故选项C错误;过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;故选:B.【点睛】此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.4、B【解析】【分析】先由与互余,求解 再利用对顶角相等可得答案.【详解】解:与互余,,,,,故选:B.【点睛】本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.5、B【解析】【分析】根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.【详解】解:∵∠AOE+∠BOE=180°,∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,又∵OE平分∠AOC,∴∠AOE=∠COE=40°,∴∠BOC=∠BOE﹣∠COE=140°﹣40°=100°,故选:B.【点睛】本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.6、B【解析】【分析】根据平移的性质对各选项进行判断.【详解】A、左图是通过翻折得到右图,不是平移,故不符合题意;B、上图可通过平移得到下图,故符合题意;C、不能通过平移得到,故不符合题意;D、不能通过平移得到,故不符合题意;故选B.【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.7、B【解析】【分析】由AB与CD平行,利用两直线平行同旁内角互补得到∠2+∠3=180°,由对顶角相等得到∠1=∠3,等量代换得到∠1=180°-∠2,再代入∠2=2∠1﹣6°,即可求出∠2的度数.【详解】解:如图:∵AB∥CD,∴∠2+∠3=180°,∴∠3=180°-∠2,∵∠1=∠3,∴∠1=180°-∠2,∴∠2=2(180°-∠2)﹣6°,∴∠2=118°,故选:B.【点睛】此题考查了对顶角性质和平行线的性质,掌握两直线平行同旁内角互补是解答此题的关键.8、D【解析】【分析】直接利用平行线的判定定理分析得出答案.【详解】解:A、已知,那么AD∥BC,故此选项不符合题意;B、已知,那么AD∥BC,故此选项不符合题意;C、已知,那么AD∥BC,故此选项不符合题意;D、已知,那么AB∥CD,不能推出AD∥BC,故此选项符合题意;故选:D.【点睛】本题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.9、A【解析】【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.10、B【解析】【分析】根据图示和平移的性质,注意正确的计数,查清方格的个数,从而求出步数.【详解】解:由图形知,中间的线段向左平移1个单位,上边的直线向右平移2个单位,最下边的直线向上平移2个单位,只有这样才能使构造的三角形平移的次数最少,其它平移方法都多于5步.∴通过平移使图中的3条线段首尾相接组成一个三角形,最少需要5步.故选:B.【点睛】本题考查了图形的平移变换,注意平移不改变图形的形状和大小且平移前后图形对应点之间的连线应该互相平行,另外使平移后成为三角形.二、填空题1、 ⊥ 90° 60° 150°【解析】略2、距离【解析】略3、70或110##110或70【解析】【分析】先根据平行线的性质,求得∠AFE的度数,再根据邻补角的定义,即可得到∠AFD的度数.【详解】解:如图,直线AB和DE相交于点F,∵BC∥DE,∠ABC=70°,∴∠AFE=∠ABC=70°,∠AFD=180°-∠AFE=110°,∴直线AB、DE的夹角是70°或110°.故答案为:70或110.【点睛】本题主要考查了平行线的性质,熟记“两直线平行,同位角相等”是解题的关键.4、15【解析】【分析】根据平移的性质可得,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,计算即可得出答案.【详解】解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要 12+3=15(米).故答案为:15.【点睛】本题主要考查了平移现象,熟练应用平移的性质进行求解是解决本题的关键.5、已知;垂直定义;等量代换;同位角相等,两直线平行;3,两直线平行,内错角相等;,两直线平行,同位角相等;等量代换;角平分线的定义【解析】【分析】根据平行线的性质,平行线的判定等相关知识解答即可.【详解】证明:于,于(已知),,(垂直定义).(等量代换).(同位角相等,两直线平行).(两直线平行,内错角相等),(两直线平行,同位角相等).又(已知),(等量代换),平分(角平分线的定义).故答案为:已知;垂直定义;等量代换;同位角相等,两直线平行;3,两直线平行,内错角相等;,两直线平行,同位角相等;等量代换;角平分线的定义.【点睛】本题考查了平行线的性质和判定,垂直即两条直角相交所成的四个角中,有一个直角;角的平分线即从角的顶点出发的射线把角分成两个相等的角,熟练掌握平行线的性质和判定是解题的关键.三、解答题1、∠C的度数为120°【解析】【分析】首先由∠CDE=150°和平角的概念得到∠CDB=30°;然后根据两直线平行,内错角相等得到∠ABD=∠CDB=30°,进而根据角平分线的定义求出∠ABC=60°,最后根据两直线平行,同旁内角互补即可求出∠C的度数.【详解】解:∵∠CDE=150°, ∴∠CDB=180°-∠CDE=30°, 又∵ABCD, ∴∠ABD=∠CDB=30°,∵BE平分∠ABC, ∴∠ABC=2∠ABD=60°, ∵ABCD, ∴∠C=180°-∠ABC=120°.【点睛】本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键.2、 (1)图见解析,作法见解析(2)或【解析】【分析】(1)先通过分析明确射线在的外部,作(或)的垂线,再利用量角器画出(或)的平分线即可得;(2)分①射线在的外部,②射线在的内部两种情况,先根据互余的定义可得,再根据角平分线的定义可得,然后根据角的和差即可得.(1)解:与互余,,,射线在的外部,先作(或)的垂线,再利用量角器画出(或)的平分线,如图所示: 或(2)解:由题意,分以下两种情况:①如图,当射线在的外部时,和互余,,比大,,即,,射线在的内部,,;②如图,当射线在的内部时,射线在的内部,,,和互余,,,比大,,,即,,解得,综上,的度数为或.【点睛】本题考查了作垂线和角平分线、与角平分线有关的计算,较难的是题(2),正确分两种情况讨论是解题关键.3、 (1)见解析(2)见解析(3)见解析【解析】【分析】(1)根据直线和射线的定义,即可求解;(2)根据垂线的定义,即可求解;(3)根据题意可得:PC+PD≥CD,从而得到当P、C、D三点共线时,PC+PD的和最短,即可求解.(1)解:直线AB和射线CB即为所求,如图所示;(2)如图,直线CE即为所求;(3)连接CD交AB于点P,如图所示,点P即为所求根据题意得:PC+PD≥CD,∴当P、C、D三点共线时,PC+PD的和最短.【点睛】本题主要考查了直线、射线、线段、垂线的定义,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线上两个点和它们之间的部分叫做线段;当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足是解题的关键.4、(1)见解析;(2)见解析;(3)8【解析】【分析】(1)连接B、C两点即可;(2)根据平移的定义,得出对应点的位置,连接即可;(3)根据三角形的面积公式计算即可.【详解】解:(1)线段BC如图所示,(2)线段DE如图所示,(3)三角形ADE的面积=【点睛】本题考查作图-平移变换.解题的关键是熟练掌握平移变换的性质.5、两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义.【解析】【分析】结合条件与图形,读懂每一步推理及推理的依据,即可完成解答.【详解】∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABC+∠CDF=180°(已知),∴∠BCD+∠CDF=180°(等量代换),∴BC∥DF(同旁内角互补,两直线平行),于是∠DBC=∠BDF(两直线平行,内错角相等),∵BE平分∠ABC,DB平分∠CDF,∴∠EBC=∠ABC,∠BDF=∠CDF(角平分线定义),∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF),即∠EBD=90°,∴BE⊥DB(垂直的定义).故答案分别为;两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义【点睛】本题考查了平行线的判定与性质,角平分线的定义及垂直的定义等知识,根据题意读懂每步推理,弄清每步推理的依据是完成本题的关键.
相关试卷
这是一份2020-2021学年第七章 相交线与平行线综合与测试复习练习题,共21页。试卷主要包含了下列A等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试随堂练习题,共25页。试卷主要包含了如图,点P是直线m外一点,A,下列说法中,错误的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后复习题,共24页。试卷主要包含了如图,下列条件中能判断直线的是,生活中常见的探照灯等内容,欢迎下载使用。