冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题,共21页。试卷主要包含了生活中常见的探照灯,如图,,交于点,,,则的度数是,如图,直线AB等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,已知直线,相交于O,平分,,则的度数是( )A. B. C. D.2、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )A.30° B.40° C.50° D.60°3、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°4、如图,小华同学用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小( )A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短5、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°A. B. C. D.6、如图,,交于点,,,则的度数是( )A.34° B.66° C.56° D.46°7、如图,直线AB、CD相交于点O,OE平分∠AOD,若∠DOE=36°,则∠BOC的度数为( )A.72° B.90° C.108° D.144°8、如图,下列条件中,不能判断∥的是( )A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠49、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°10、如图,l1∥l2,l3∥l4,与∠α互补的是( )A.∠1 B.∠2 C.∠3 D.∠4第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、两条平行直线被第三条直线所截,同位角相等.简称:两直线平行,同位角_________.如图,因为a∥b,(已知)所以∠1=_________.(两直线平行,同位角相等)2、平移的概念:一个图形沿着某个方向移动一定的距离,图形的这种移动,叫做______.3、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____4、平移的性质:①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小______.②新图形中的每一个点,都是由原图形中的某一点移动后得到的,这两个点是对称点,连接各组对应点的线段______且______.5、如图,直线 a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=______°.三、解答题(5小题,每小题10分,共计50分)1、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:(1)如图a,在线段AB上找一点P,使PC+PD最小.(2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.(3)如图c,画线段CM∥AB.要求点M在格点上.2、如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点叫做格点,请利用格点和直尺画图,并完成填空.(画出的点、线请用铅笔描粗描黑)(1)画线段和直线;(2)过点画的垂线,垂足为点,并标出经过的格点;(3)线段长是点______到直线______的距离;(4)三角形的面积是______.3、如图,已知AB∥CD,AD和BC交于点O,E为OC上一点,F为CD上一点,且∠CEF+∠BOD=180°.说明∠EFC=∠A的理由.4、如图,已知∠1=∠2=52°,EFDB.(1)DG与AB平行吗?请说明理由;(2)若EC平分∠FED,求∠C的度数.5、如图,已知AE平分∠BAC交BC于点E,AF平分∠CAD交BC的延长线于点F,∠B=64°,∠EAF=58°,试判断AD与BC是否平行.解:∵AE平分∠BAC,AF平分∠CAD(已知),∴∠BAC=2∠1,∠CAD= ( ).又∵∠EAF=∠1+∠2=58°,∴∠BAD=∠BAC+∠CAD=2(∠1+∠2)= °(等式性质).又∵∠B=64°(已知),∴∠BAD+∠B= °.∴ ( ). -参考答案-一、单选题1、C【解析】【分析】先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.【详解】解:∵OA平分∠EOC,∠EOC=100°,∴∠AOC=∠EOC=50°,∴∠BOC=180°﹣∠AOC=130°.故选:C.【点睛】本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.2、C【解析】【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.3、B【解析】【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.4、D【解析】【分析】根据两点之间,线段最短解答即可.【详解】解:用剪刀沿虚线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.5、C【解析】【分析】根据平行线的性质可得,进而根据即可求解【详解】解:故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.6、C【解析】【分析】由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵,,∴,∵,∴,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.7、A【解析】【分析】由角平分线的定义可求得∠AOD的度数,由对顶角相等即可求得结果.【详解】∵OE平分∠AOD,∴∠AOD=2∠DOE=2×36°=72°,∵∠BOC与∠AOE是对顶角,∴∠BOC的度数为72°,故选:A【点睛】本题考查了角平分线的定义、对顶角相等等知识,掌握这两个知识是解题的关键.8、D【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:、,内错角相等,,故本选项错误,不符合题意;、,同位角相等,,故本选项错误,不符合题意;、,同旁内角互补,,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.9、D【解析】【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意; ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意; (同位角相等,两直线平行)故C不符合题意; ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定 故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.10、D【解析】【分析】如图,先证明再证明 可得 再利用邻补角的定义可得答案.【详解】解:如图, 所以与∠α互补的是 故选D【点睛】本题考查的是平行线的性质,邻补角的定义,掌握“两直线平行,同位角相等”是解本题的关键.二、填空题1、 相等 ∠2【解析】略2、平移【解析】略3、【解析】【分析】先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.【详解】解:∠EFG+∠EGD=150°,∠EGD=折叠故答案为:.【点睛】本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.4、 完全相同 平行(或共线) 相等【解析】略5、75【解析】【分析】先计算∠AOB的度数,后利用对顶角相等确定即可.【详解】如图,根据题意,得∠AOB=135°-60°=75°,∵∠AOB=∠1, ∴∠1=75°,三、解答题1、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.【详解】解:(1)如图a,点P即为所求;(2)如图b,点Q和线段CQ即为所求;(3)如图c,线段CM即为所求.【点睛】本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.2、 (1)见解析(2)见解析(3),(4)【解析】【分析】(1)连接 过两点画直线即可;(2)观察线段,可得是网格图中3个小正方形组成的小长方形的对角线,利用这个特点画线段即可;(3)由点到直线的距离的概念可直接得到答案;(4)利用长方形的面积减去周围三个三角形的面积即可.(1)解:如图,线段 直线即为所求作的线段与直线,(2)解:如(1)中图,即为所求作的垂线,为格点,为垂足.(3)解:由点到直线的距离的概念可得:线段长是点到直线的距离.故答案为:(4)解: 故答案为:【点睛】本题考查的是画线段,直线,利用网格图作已知直线的垂线,点到直线的距离,网格三角形的面积的计算,掌握以上基础知识是解本题的关键.3、见解析【解析】【分析】由AB∥DC可得到∠A与∠D的关系,再由∠CEF+∠BOD=180°可得到∠CEF=∠COD,根据平行线的判定定理可得EF∥AD,可得∠D与∠EFC的关系,等量代换可得结论.【详解】证明:∵AB∥CD,∴∠A=∠D,∵∠CEF+∠BOD=180°,∠BOD+∠DOC=180°,∴∠CEF=∠DOC.∴EF∥AD.∴∠EFC=∠D,∵∠A=∠D,∴∠EFC=∠A.【点睛】本题考查了平行线的判定和性质,掌握平行线的性质和判定方法是解决本题的关键.4、 (1)平行,理由见解析(2)65°【解析】【分析】(1)DG与AB平行.由可得∠1=∠D,由∠1=∠2,可得∠2=∠D,结论可求得;(2)由EC平分∠FED,可得∠DEC=∠DEF=65°,再利用得到∠C=∠DEC,结论可求.(1)解: DG与AB平行.理由: ∵, ∴∠1=∠D.∵∠1=∠2,∴∠D=∠2.∴.(2)解:∵EC平分∠FED,∴∠DEC=∠DEF.∵∠1=50°,∴∠DEF=180°﹣∠1=130°.∴∠DEC=∠DEF=65°.∵,∴∠C=∠DEC=65°.【点睛】此题考查了平行线的判定及性质,熟练掌握平行线的判定定理及性质定理并综合应用是解题的关键.5、2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行【解析】【分析】由AE平分∠BAC,AF平分∠CAD,利用角平分线的定义可得出∠BAC=2∠1,∠CAD=2∠2,结合∠EAF=∠1+∠2=58°可得出∠BAD=116°,由∠B=64°,∠BAD=116°,可得出∠BAD+∠B=180°,再利用“同旁内角互补,两直线平行”即可得出AD∥BC.【详解】解:∵AE平分∠BAC,AF平分∠CAD(已知),∴∠BAC=2∠1,∠CAD=2∠2(角平分线的定义).又∵∠EAF=∠1+∠2=58°,∴∠BAD=∠BAC+∠CAD=2(∠1+∠2)=116°(等式性质).又∵∠B=64°(已知),∴∠BAD+∠B=180°.∴AD∥BC(同旁内角互补,两直线平行).故答案为:2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行.【点睛】此题考查了角平分线的定义,角的计算,平行线的判定.正确掌握线段、角、相交线与平行线的知识是解题的关键,还需掌握推理能力.
相关试卷
这是一份数学七年级下册第七章 相交线与平行线综合与测试复习练习题,共22页。试卷主要包含了如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试单元测试同步测试题,共20页。试卷主要包含了下列命题中,是假命题的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试习题,共20页。试卷主要包含了生活中常见的探照灯,下列命题中,是假命题的是,以下命题是假命题的是等内容,欢迎下载使用。