七年级下册第七章 相交线与平行线综合与测试精练
展开这是一份七年级下册第七章 相交线与平行线综合与测试精练,共23页。试卷主要包含了下列命题是真命题的是,下列说法正确的有,如图所示,直线l1∥l2,点A等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )
A.15° B.20° C.25° D.30°
2、下列说法正确的是( )
A.同位角相等
B.在同一平面内,如果a⊥b,b⊥c,则a⊥c
C.相等的角是对顶角
D.在同一平面内,如果a∥b,b∥c,则a∥c
3、如图,直线b、c被直线a所截,则与是( )
A.对顶角 B.同位角 C.内错角 D.同旁内角
4、如果存在一条直线将一个图形分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )
A. B.
C. D.
5、下列命题是真命题的是( )
A.内错角相等
B.过一点有且只有一条直线与已知直线垂直
C.相等的角是对顶角
D.过直线外一点,有且只有一条直线与已知直线平行
6、下列图形中,由∠1=∠2能得到ABCD的图形有( )个
A.4 B.3 C.2 D.1
7、如图,如果将图中任意一条线段沿方格线的水平或竖直方向平移1格称为“1步”,那么通过平移要使图中的3条线段首尾相接组成一个三角形,最少需要( )
A.4步 B.5步 C.6步 D.7步
8、下列说法正确的有( )
①两点之间的所有连线中,线段最短;
②相等的角叫对顶角;
③过一点有且只有一条直线与已知直线平行;
④若AC=BC,则点C是线段AB的中点;
⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.
A.1个 B.2个 C.3个 D.4个
9、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )
A.S1>S2 B.S1=S2 C.S1<S2 D.不确定
10、下面的四个图形中,能够通过基本图形平移得到的图形有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,给出下列条件:①;②;③;④.其中,能推出AD//BC的条件是 __.(填上所有符合条件的序号)
2、如图,直线 a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=______°.
3、如图,已知EF∥GH,AC⊥CD,∠DCH=35°,则∠CBF=______度.
4、如图,∠C=90°,线段AB=10cm,线段AD=8cm,线段AC=6cm,则点A到BC的距离为_____cm.
5、两条平行直线被第三条直线所截,同旁内角互补.
简称:两直线平行,同旁内角_________.
如图,因为a∥b (已知),
所以∠1+∠2=_________(两直线平行,同旁内角互补) .
三、解答题(5小题,每小题10分,共计50分)
1、如图,点A在的一边OA上.按要求画图并填空.
(1)过点A画直线,与的另一边相交于点B;
(2)过点A画OB的垂线AC,垂足为点C;
(3)过点C画直线,交直线AB于点D;
(4)直接写出______°;
(5)如果,,,那么点A到直线OB的距离为______.
2、作图并计算:如图,点O在直线上.
(1)画出的平分线(不必写作法);
(2)在(1)的前提下,若,求的度数.
3、P是三角形ABC内一点,射线PDAC,射线PEAB.
(1)当点D,E分别在AB,BC上时,
①补全图1;
②猜想∠DPE与∠A的数量关系,并证明;
(2)当点D,E都在线段BC上时,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
4、已知一角的两边与另一个角的两边分别平行,试探索这两个角之间的关系,并说明你的结论.
(1)如图1所示,,,则与的关系是 ;
(2)如图2所示,,,则与的关系是 ;
(3)经过上述探索,我们可以得到一个结论(试用文字语言表述): ;
(4)若两个角的两边分别平行,且一个角比另一个角的倍少,则这两个分别是多少度?
5、如图,已知∠MON=60°,点A在射线OM上,点B在射线ON下方.请选择合适的画图工具按要求画图并回答问题.(要求:不写画法,保留画图痕迹)
(1)过点A作直线l,使直线l只与∠MON的一边相交;
(2)在射线ON上取一点C,使得OC=OA,连接AC,度量∠OAC的大小为 °;(精确到度)
(3)在射线ON上作一点P,使得AP+BP最小,作图的依据是 .
-参考答案-
一、单选题
1、B
【解析】
【分析】
若使直线b与直线c平行,则∠1=180°-∠2=140°,还差20°,故旋转20°.
【详解】
解:
∵∠1=120°,
∴∠3=180°-120°=60°.
∵∠2=40°,
∴要使b∥c,则∠2=∠3,
∴直线b绕点A逆时针旋转60°-40°=20°.
故选B.
【点睛】
本题考查直线与平行线相交的性质,掌握这些性质是本题关键.
2、D
【解析】
【分析】
根据同位角的定义、垂线的性质、对顶角的性质、平行公理依次判断.
【详解】
解:A. 同位角不一定相等,故该项不符合题意;
B. 在同一平面内,如果a⊥b,b⊥c,则ac,故该项不符合题意;
C. 相等的角不一定是对顶角,故该项不符合题意;
D. 在同一平面内,如果ab,bc,则ac,故该项符合题意;
故选:D.
【点睛】
此题考查了语句的判断,正确掌握同位角的定义、垂线的性质、对顶角的性质、平行公理是解题的关键.
3、B
【解析】
【分析】
根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
【详解】
∠1与∠2是同位角
故选:B
【点睛】
本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
4、D
【解析】
【分析】
如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D.
【详解】
解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.
则有:AF=FD,BE=EC,AB=EF=CD,
∴四边形ABEF向右平移可以与四边形EFCD重合,
∴平行四边形ABCD是平移重合图形.
同理可证,正方形,长方形,也是平移重合图形,故选项A、B、C不符合题意,
而找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D符合题意;
故选D.
【点睛】
本题考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题.
5、D
【解析】
【分析】
根据平行线的性质、垂直的判定、对顶角和平行线的判定进行判断即可.
【详解】
解:A、两直线平行,内错角相等,原命题是假命题;
B、在同一平面上,过一点有且只有一条直线与已知直线垂直,原命题是假命题;
C、相等的角不一定是对顶角,原命题是假命题;
D、过直线外一点,有且只有一条直线与已知直线平行,是真命题;
故选:D.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的性质、垂直的判定、对顶角和平行线的判定.
6、C
【解析】
【分析】
在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此判断即可.
【详解】
解:第一个图形,∵∠1=∠2,
∴AC∥BD;故不符合题意;
第二个图形,∵∠1=∠2,
∴AB∥CD,故符合题意;
第三个图形,
∵∠1=∠2,∠2=∠3,
∴∠1=∠3,
∴AB∥CD;
第四个图形,∵∠1=∠2不能得到AB∥CD,
故不符合题意;
故选:C.
【点睛】
本题考查了平行线的判定,解题的关键是注意平行线判定的前提条件必须是三线八角.
7、B
【解析】
【分析】
根据图示和平移的性质,注意正确的计数,查清方格的个数,从而求出步数.
【详解】
解:由图形知,中间的线段向左平移1个单位,上边的直线向右平移2个单位,最下边的直线向上平移2个单位,只有这样才能使构造的三角形平移的次数最少,其它平移方法都多于5步.
∴通过平移使图中的3条线段首尾相接组成一个三角形,最少需要5步.
故选:B.
【点睛】
本题考查了图形的平移变换,注意平移不改变图形的形状和大小且平移前后图形对应点之间的连线应该互相平行,另外使平移后成为三角形.
8、B
【解析】
【分析】
根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.
【详解】
解:①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,
⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;
所以,正确的结论有①⑤共2个.
故选:B.
【点睛】
本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.
9、B
【解析】
【分析】
由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.
【详解】
解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
故选:B.
【点睛】
本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.
10、B
【解析】
【分析】
根据平移的性质,对逐个选项进行分析即可.
【详解】
解:第一个、第二个图不能由基本图形平移得到,
第三个、第四个图可以由基本图形平移得到,
故选:B.
【点睛】
本题主要考查了图形的平移,图形的平移只改变图形的位置,不改变图形的形状,大小,方向.学生比较难区分平移、旋转或翻转.
二、填空题
1、②④##④②
【解析】
【分析】
利用平行线的判定定理依次判断.
【详解】
①,;
②,;
③,;
④,.
故答案为:②④.
【点睛】
此题考查了平行线的判定定理,熟记平行线的判定定理并熟练应用是解题的关键.
2、75
【解析】
【分析】
先计算∠AOB的度数,后利用对顶角相等确定即可.
【详解】
如图,根据题意,得∠AOB=135°-60°=75°,
∵∠AOB=∠1,
∴∠1=75°,
3、125
【解析】
【分析】
首先根据垂直定义可得∠ACD=90°,再根据余角的定义可得∠ACH的度数,然后再根据平行线的性质可得∠FBC+∠ACH=180°,进而可得答案.
【详解】
解:∵AC⊥CD,
∴∠ACD=90°,
∵∠DCH=35°,
∴∠ACH=90°﹣35°=55°,
∵EF∥GH,
∴∠FBC+∠ACH=180°,
∴∠FBC=180°﹣55°=125°,
故答案为:125.
【点睛】
此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.
4、6
【解析】
【分析】
根据点到直线的距离的定义,可得答案.
【详解】
解:因为∠C=90°,
所以AC⊥BC,
所以A到BC的距离是AC,
因为线段AC=6cm,
所以点A到BC的距离为6cm.
故答案为:6.
【点睛】
本题考查了点到直线的距离,明确定义是关键.
5、 互补 180°
【解析】
略
三、解答题
1、(1)图见解析;(2)图见解析;(3)图见解析;(4)90;(5).
【解析】
【分析】
(1)根据垂线的画法即可得;
(2)根据垂线的画法即可得;
(3)根据平行线的画法即可得;
(4)根据平行线的性质可得;
(5)利用三角形的面积公式即可得.
【详解】
解:(1)如图,直线即为所求;
(2)如图,垂线即为所求;
(3)如图,直线即为所求;
(4),
,
,
,
故答案为:90;
(5),
,即,
解得,
即点到直线的距离为,
故答案为:.
【点睛】
本题考查了画垂线和平行线、平行线的性质、点到直线的距离等知识点,熟练掌握平行线的画法和性质是解题关键.
2、(1)见解析;(2)150°
【解析】
【分析】
(1)根据画角平分线的方法,画出角平分线即可;
(2)先求出的度数,然后由角平分线的定义,即可求出答案.
【详解】
解:(1)如图,OD即为平分线
(2)解:∵,
∴,
,
∴;
【点睛】
本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.
3、 (1)①见解析;②∠DPE+∠A=180°.证明见解析
(2)不成立,此时∠DPE=∠A.证明见解析
【解析】
【分析】
(1)①根据题意补全图形即可;
②根据平行线的性质,即可得到∠A=∠BDP,∠DPE+∠BDP=180°,即可得到∠DPE与∠A的数量关系;
(2)先反向延长射线PD交AB于点D1,可知∠DPE+∠D1PE=180°,由(1)结论可知∠D1PE+∠A=180°,进而得出∠DPE=∠A.
(1)
解:①补全图形,如图1所示.
②∠DPE+∠A=180°.
证明:∵PD∥AC,
∴∠A=∠BDP.
∵PE∥AB,
∴∠DPE+∠BDP=180°,
∴∠DPE+∠A=180°;
(2)
解:不成立,此时∠DPE=∠A.
理由如下:如图2,反向延长射线PD交AB于点D1,可知∠DPE+∠D1PE=180°.
由(1)结论可知∠D1PE+∠A=180°.
∴∠DPE=∠A.
【点睛】
本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.
4、(1);(2);(3)一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补;(4),
【解析】
【分析】
(1)根据两直线平行,同位角相等,可求出∠1=∠2;
(2)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠2=180°;
(3)由(1)(2)可得出结论;
(4)由(3)可列出方程,求出角的度数.
【详解】
解:(1)如图1.
,
.
,
.
.
故答案为:.
(2),
.
,
.
.
故答案为:.
(3)由(1)、(2)得:一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补.
(4)这两个角分别是、,且.
,
.
.
.
这两个角分别为、.
图1 图2
【点睛】
本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.
5、 (1)见解析
(2)见解析,60
(3)见解析,两点之间,线段最短
【解析】
【分析】
(1)根据相交线的定义(如果两条直线只有一个公共点时,我们称这两条直线相交)作图即可;
(2)利用直尺先测量出OA长度,然后以点O为左端点,在射线ON上找出点C,连接AC,利用量角器度量角的度数即可得;
(3)连接AB与射线ON交于点P,即为所求,依据两点之间线段最短确定.
(1)
解:过点A作直线l如图所示:
(2)
解:利用直尺先测量出OA长度,然后以点O为左端点,在射线ON上找出点C,连接AC,如图所示;
经过测量:,
故答案为:60;
(3)
解:连接AB,与射线ON交于点P,即为所求,
依据两点之间线段最短确定,
故答案为:两点之间线段最短.
【点睛】
题目主要考查相交线的定义、作一条线段等于已知线段、度量角度、两点之间线段最短等知识点,理解题意,综合运用这些知识点是解题关键.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试随堂练习题,共22页。试卷主要包含了如图,点A等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后练习题
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试随堂练习题,共21页。试卷主要包含了如图,下列条件中能判断直线的是等内容,欢迎下载使用。