冀教版七年级下册第七章 相交线与平行线综合与测试同步练习题
展开冀教版七年级下册第七章相交线与平行线专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
2、如图,下列条件能判断直线l1//l2的有( )
①;②;③;④;⑤
A.1个 B.2个 C.3个 D.4个
3、如图所示,∠1和∠2是对顶角的图形共有( )
A.0个 B.1个 C.2个 D.3个
4、如图,点A、O、B在一条直线上,,OD平分,现将OC以每秒5°的速度绕点O顺时针旋转一周,OD保持不动.当时,OC的运动时间为( )
A.5秒 B.31秒 C.5秒或41秒 D.5秒或67秒
5、如果∠A的两边分别垂直于∠B的两边,那么∠A和∠B的数量关系是( )
A.相等 B.互余或互补 C.互补 D.相等或互补
6、如图,下列条件中能判断直线的是( )
A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠5
7、如图,若AB∥CD,CD∥EF,那么BCE=( )
A.180°-2+1 B.180°-1-2 C.2=21 D.1+2
8、如图,已知AB∥CD,∠1=30°,∠2=90°,则∠3等于( )
A.60° B.50° C.45° D.30°
9、如图,直线b、c被直线a所截,则与是( )
A.对顶角 B.同位角 C.内错角 D.同旁内角
10、下列命题中是假命题的是( )
A.两直线平行,同位角相等 B.同旁内角互补,两直线平行
C.垂直于同一直线的两直线平行 D.对顶角相等
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,给出下列条件:①;②;③;④.其中,能推出AD//BC的条件是 __.(填上所有符合条件的序号)
2、如图,ADBC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是2,则△BOC的面积是 ___.
3、如图,直线AB、CD、EF相交于点O,,OG平分∠BOE,且∠EOG=36°,则∠AOC=______.
4、如图,一条公路两次转弯后,和原来的方向相同,如果第一次的拐角是,则第二次的拐角是__.
5、一般地,将一个图形依次沿两个坐标轴方向平移所得到的图形,可以通过将原来的图形作_________平移得到.
对一个图形进行平移,这个图形上所有点的坐标都要发生相应的_________;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
三、解答题(5小题,每小题10分,共计50分)
1、如图所示,点、分别在、上,、均与相交,,,求证:.
2、根据要求画图或作答:如图所示,已知A、B、C三点.
(1)连结线段AB;
(2)画直线AC和射线BC;
(3)过点B画直线AC的垂线,垂足为点D,则点A到直线BD的距离是线段_______的长度.
3、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣ (邻补角定义)
=180°﹣ °
= °
∵OC平分∠AOF(已知)
∴∠AOC∠AOF( )
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC( )
=180°﹣90°﹣ °
= °
4、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.
(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为 °,∠CON的度数为 °;
(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为 °;
(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为 °;∠DOC与∠BON的数量关系是∠DOC ∠BON(填“>”、“=”或“<”);
(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为 °;∠AOM﹣∠CON的度数为 °
5、如图,在6×6的正方形网格中,每个小正方形的边长是1,点M、N、P、Q均为格点(格点是指每个小正方形的顶点),线段MN经过点P.
(1)过点P画线段AB,使得线段AB满足以下两个条件:①AB⊥MN;②;
(2)过点Q画MN的平行线CD,CD与AB相交于点E;
(3)若格点F使得△PFM的面积等于4,则这样的点F共有 个.
-参考答案-
一、单选题
1、D
【解析】
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
2、D
【解析】
【分析】
根据平行线的判定定理进行依次判断即可.
【详解】
①∵∠1,∠3互为内错角,∠1=∠3,∴;
②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
③∠4,∠5互为同位角,∠4=∠5,∴;
④∠2,∠3没有位置关系,故不能证明 ,
⑤,,
∴∠1=∠3,
∴,
故选D.
【点睛】
此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
3、B
【解析】
【分析】
对顶角:有公共的顶点,角的两边互为反向延长线,根据定义逐一判断即可.
【详解】
只有(3)中的∠1与∠2是对顶角.
故选B
【点睛】
本题考查了对顶角的定义,理解对顶角的定义是解题的关键.
4、C
【解析】
【分析】
根据,求出补角得出 ∠AOC=180°-∠BOC=180°-50°=130°,根据OD平分,得出∠DOC=∠AOD=,设OC以每秒5°的速度绕点O顺时针旋转的时间为t秒,当时,CO旋转所成的角度为∠DOC=90°或∠DOC=270°,
列方程65°+5°t=90°或65°+5°t=270°解方程即可.
【详解】
解:∵,
∴∠AOC=180°-∠BOC=180°-50°=130°,
∵OD平分,
是由∠DOC=∠AOD=,
设OC以每秒5°的速度绕点O顺时针旋转的时间为t,
当时,CO旋转所成的角度为∠DOC=90°,或∠DOC=270°,
∴65°+5°t=90°或65°+5°t=270°,
∴t=5秒或41秒.
故选C.
【点睛】
本题考查补角性质,角平分线,两直线垂直性质,角的和差,图形旋转,解一元一次方程,掌握补角性质,角平分线,两直线垂直性质,角的和差,图形旋转,解一元一次方程是解题关键.
5、D
【解析】
【分析】
由题意直接根据∠A的两边分别垂直于∠B的两边画出符合条件的图形进行判断即可.
【详解】
解:BD⊥AD,CE⊥AB,如图:
∵∠A=90°﹣∠ABD=∠DBC,
∴∠A与∠DBC两边分别垂直,它们相等,
而∠DBE=180°﹣∠DBC=180°﹣∠A,
∴∠A与∠DBE两边分别垂直,它们互补,
故选:D.
【点睛】
本题考查垂线及角的关系,解题关键是根据已知画出符合条件的图形.
6、C
【解析】
【分析】
利用平行线的判定方法判断即可得到结果.
【详解】
解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.
B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.
C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.
D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.
故选:C.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
7、A
【解析】
【分析】
根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.
【详解】
∵AB∥CD,CD∥EF,
∴∠1=∠BCD,∠ECD+∠2=180°,
∴BCE=∠BCD+∠ECD=180°-2+1,
故选A.
【点睛】
本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.
8、A
【解析】
略
9、B
【解析】
【分析】
根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
【详解】
∠1与∠2是同位角
故选:B
【点睛】
本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
10、C
【解析】
【分析】
根据平行线的性质与判定,对顶角的性质,逐项分析判断即可
【详解】
解:A. 两直线平行,同位角相等,故该选项是真命题,不符合题意;
B. 同旁内角互补,两直线平行,故该选项是真命题,不符合题意;
C. 同一平面内,垂直于同一直线的两直线平行,故该选项是假命题,符合题意;
D. 对顶角相等,故该选项是真命题,不符合题意;
故选C
【点睛】
本题考查了真假命题的判断,掌握平行线的性质与判定,对顶角的性质是解题的关键.
二、填空题
1、②④##④②
【解析】
【分析】
利用平行线的判定定理依次判断.
【详解】
①,;
②,;
③,;
④,.
故答案为:②④.
【点睛】
此题考查了平行线的判定定理,熟记平行线的判定定理并熟练应用是解题的关键.
2、3
【解析】
【分析】
根据平行可得:与高相等,即两个三角形的面积相等,根据图中三角形之间的关系即可得.
【详解】
解:∵,
∴与高相等,
∴,
又∵,
∴,
故答案为:3.
【点睛】
题目主要考查平行线间的距离相等,三角形面积的计算等,理解题意,掌握平行线之间的距离相等是解题关键.
3、18°##18度
【解析】
【分析】
首先根据角平分线的性质可得∠BOE=72°,则对顶角相等:∠AOF=72°,进而可以根据垂直的定义解答.
【详解】
解:∵∠EOG=36°,OG平分∠BOE,
∴∠BOE=2∠BOG=72°,
∴∠AOF=∠BOE=72°,
又CD⊥EF,
∴∠COE=90°,
∴∠AOC=90°-72°=18°.
故答案为:18°.
【点睛】
本题考查的知识点是垂线,角平分线的定义,对顶角、解题的关键是熟练的掌握垂线,角平分线的定义,对顶角.
4、135
【解析】
【分析】
两直线平行,内错角相等,可知,进而得出结果.
【详解】
解:道路是平行的
(两直线平行,内错角相等)
故答案为:135.
【点睛】
此题考查平行线的性质.解题的关键在于实际问题转化为几何问题,利用平行线的性质求解.
5、 一次 变化
【解析】
略
三、解答题
1、证明见解析
【解析】
【分析】
由,证明,再证,最后根据对顶角相等,可得答案.
【详解】
证明:∵,
∴,
∴,
又∵,
∴,
∴,
∴,
∵,
∴.
【点睛】
本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.
2、(1)画图见解析;(2)画图见解析;(3)画图见解析,
【解析】
【分析】
(1)连接即可;
(2)过两点画直线即可,以为端点画射线即可;
(3)利用三角尺过画的垂线,垂足为 可得 从而可得点A到直线BD的距离是垂线段的长度.
【详解】
解:(1)如图,线段AB即为所求作的线段,
(2)如图,直线AC和射线BC即为所求作的直线与射线,
(3)如图,BD即为所画的垂线,
点A到直线BD的距离是线段的长度.
故答案为:
【点睛】
本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.
3、角平分线的定义,平角的定义,
【解析】
【分析】
先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
【详解】
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣(邻补角定义)
=180°﹣40°
=140°
∵OC平分∠AOF(已知)
∴∠AOC∠AOF(角平分线的定义)
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
=180°﹣90°﹣70°
=20°
故答案为:角平分线的定义,平角的定义,
【点睛】
本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
4、(1)120;150;(2)30°;(3)30,=;(4)150;30.
【解析】
【分析】
(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;
(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;
(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.
【详解】
解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,
∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.
故答案为120;150;
(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,
由(1)得∠BOC=120°,
∴∠BOM=∠BOC=60°,
又∵∠MON=∠BOM+∠BON=90°,
∴∠BON=90°﹣60°=30°.
故答案为30°;
(3)∵∠AOD=∠BON(对顶角),∠BON=30°,
∴∠AOD=30°,
又∵∠AOC=60°,
∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
故答案为30,=;
(4)∵MN⊥AB,
∴∠AON与∠MNO互余,
∵∠MNO=60°(三角板里面的60°角),
∴∠AON=90°﹣60°=30°,
∵∠AOC=60°,
∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,
∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,
∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.
故答案为150;30.
【点睛】
本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.
5、 (1)见解析
(2)见解析
(3)6
【解析】
【分析】
(1)根据网格作图即可;
(2)根据网格作图即可;
(3)根据网格作图即可.
(1)
解:作图如下:
(2)
解:作图见(1)
(3)
如图:
故符合题意的点F有6个.
故答案为:6
【点睛】
本题考查了直线、射线、线段及平行公理的应用,解题的关键是准确作出图形.
冀教版七年级下册第七章 相交线与平行线综合与测试课后复习题: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后复习题,共23页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题,共19页。试卷主要包含了下列说法正确的是,下列说法中,错误的是等内容,欢迎下载使用。
初中数学第七章 相交线与平行线综合与测试随堂练习题: 这是一份初中数学第七章 相交线与平行线综合与测试随堂练习题,共22页。试卷主要包含了如图所示,直线l1∥l2,点A,如图,点P是直线m外一点,A,直线,下列A等内容,欢迎下载使用。