数学七年级下册第七章 相交线与平行线综合与测试课时练习
展开
这是一份数学七年级下册第七章 相交线与平行线综合与测试课时练习,共23页。试卷主要包含了下列命题是真命题的是,下列命题不正确的是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )A.3.5 B.4 C.5 D.5.52、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠53、如图,直线a、b被直线c所截,下列说法不正确的是( )A.1与5是同位角 B.3与6是同旁内角C.2与4是对顶角 D.5与2是内错角4、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )A.等于4cm B.小于4cmC.大于4cm D.不大于4cm5、如果∠A的两边分别垂直于∠B的两边,那么∠A和∠B的数量关系是( )A.相等 B.互余或互补 C.互补 D.相等或互补6、下列命题是真命题的是( )A.内错角相等B.过一点有且只有一条直线与已知直线垂直C.相等的角是对顶角D.过直线外一点,有且只有一条直线与已知直线平行7、下列图形中,由∠1=∠2能得到ABCD的图形有( )个A.4 B.3 C.2 D.18、下列命题不正确的是( )A.直角三角形的两个锐角互补 B.两点确定一条直线C.两点之间线段最短 D.三角形内角和为180°9、如图,下列四个选项中不能判断AD∥BC的是( )A. B.C. D.10、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )A.30° B.45° C.60° D.75°第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,平分,,,则__.2、如图,给出下列条件:①;②;③;④.其中,能推出AD//BC的条件是 __.(填上所有符合条件的序号)3、如图,已知∠1=30°,∠2或∠3满足条件_________,则a∥b.4、如图,,若,平分,则的度数是_____.5、如图,在公园绿化时,需要把管道l中的水引到A,B两处.工人师傅设计了一种又快又节省材料的方案如下:画法:如图,(1)连接AB;(2)过点A画线段直线l于点C,所以线段AB和线段AC即为所求.请回答:工人师傅的画图依据是______.三、解答题(5小题,每小题10分,共计50分)1、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.(1)如图1,求∠DOE的度数;(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.2、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.(1)如图①,若∠BEF=130°,则∠FGC= 度;(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.解:如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC( )又∵EM∥FG∴∠FGC=∠EMC( )∠EFG+∠FEM=180°( )即∠FGC=( )(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC= 即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.3、如图,在6×6的正方形网格中,每个小正方形的边长是1,点M、N、P、Q均为格点(格点是指每个小正方形的顶点),线段MN经过点P.(1)过点P画线段AB,使得线段AB满足以下两个条件:①AB⊥MN;②;(2)过点Q画MN的平行线CD,CD与AB相交于点E;(3)若格点F使得△PFM的面积等于4,则这样的点F共有 个.4、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.5、如图,,试说明.证明:∵(己知),∴(___________________),∴____________(同位角相等,两直线平行),∵(已知),∴(___________________),∴(___________________),∴(两直线平行,同位角相等). -参考答案-一、单选题1、D【解析】【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.【详解】∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.∵AB=3,∴AC=5,∴3≤AP≤5,故AP不可能是5.5,故选:D.【点睛】本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.2、D【解析】【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.3、D【解析】【分析】根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.【详解】解:A、∠1与∠5是同位角,故本选项不符合题意;B、∠3与∠6是同旁内角,故本选项不符合题意.C、∠2与∠4是对顶角,故本选项不符合题意;D、∠5与2不是内错角,故本选项符合题意.故选:D.【点睛】本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4、D【解析】【分析】根据平行线间的距离的定义解答即可.【详解】解:分两种情况:如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm直线a与直线b之间的距离不大于4cm.故选D.【点睛】本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.5、D【解析】【分析】由题意直接根据∠A的两边分别垂直于∠B的两边画出符合条件的图形进行判断即可.【详解】解:BD⊥AD,CE⊥AB,如图:∵∠A=90°﹣∠ABD=∠DBC,∴∠A与∠DBC两边分别垂直,它们相等,而∠DBE=180°﹣∠DBC=180°﹣∠A,∴∠A与∠DBE两边分别垂直,它们互补,故选:D.【点睛】本题考查垂线及角的关系,解题关键是根据已知画出符合条件的图形.6、D【解析】【分析】根据平行线的性质、垂直的判定、对顶角和平行线的判定进行判断即可.【详解】解:A、两直线平行,内错角相等,原命题是假命题;B、在同一平面上,过一点有且只有一条直线与已知直线垂直,原命题是假命题;C、相等的角不一定是对顶角,原命题是假命题;D、过直线外一点,有且只有一条直线与已知直线平行,是真命题;故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、垂直的判定、对顶角和平行线的判定.7、C【解析】【分析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此判断即可.【详解】解:第一个图形,∵∠1=∠2,∴AC∥BD;故不符合题意;第二个图形,∵∠1=∠2,∴AB∥CD,故符合题意;第三个图形,∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴AB∥CD;第四个图形,∵∠1=∠2不能得到AB∥CD,故不符合题意;故选:C.【点睛】本题考查了平行线的判定,解题的关键是注意平行线判定的前提条件必须是三线八角.8、A【解析】【分析】根据直角三角形两锐角互余可直接进行判断.【详解】解:A、直角三角形的两个锐角互补,是假命题,符合题意;B、两点确定一条直线,是真命题,不符合题意;C、两点之间线段最短,是真命题,不符合题意;D、三角形内角和为,是真命题,不符合题意;故选A.【点睛】本题考查了假命题的判断,解题的关键是熟练掌握直角三角形两锐角互余.9、D【解析】【分析】直接利用平行线的判定定理分析得出答案.【详解】解:A、已知,那么AD∥BC,故此选项不符合题意;B、已知,那么AD∥BC,故此选项不符合题意;C、已知,那么AD∥BC,故此选项不符合题意;D、已知,那么AB∥CD,不能推出AD∥BC,故此选项符合题意;故选:D.【点睛】本题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.10、D【解析】【分析】由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.【详解】解:∵AC平分∠BAD,∠BAD=90°,∴∠BAC=45°∵BD∥AC,∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,∵∠CBD=∠ABD+∠ABC=45°+60°=105°,∴∠1=75°,故选D.【点睛】本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.二、填空题1、##BC//DE【解析】【分析】由平分,可得,再根据同旁内角互补两直线平行可得结论.【详解】解:平分,,∴=2=110°,,∴∠C+∠CDE=70°+110°=180°,.故答案为:.【点睛】本题考查了角的平分线的性质,平行线的判定,熟练的掌握平行线的判定方法是解题关键.2、②④##④②【解析】【分析】利用平行线的判定定理依次判断.【详解】①,;②,;③,;④,.故答案为:②④.【点睛】此题考查了平行线的判定定理,熟记平行线的判定定理并熟练应用是解题的关键.3、∠2=150°或∠3=30°【解析】略4、【解析】【分析】先求解 利用角平分线再求解 由可得答案.【详解】解: ,, 平分, 故答案为:【点睛】本题考查的是垂直的定义,角平分线的定义,角的和差运算, 熟练的运用“角的和差关系与角平分线的定义”是解本题的关键.5、两点之间,线段最短;垂线段最短【解析】【分析】根据两点之间线段最短以及垂线段最短即可判断.【详解】解:由于两点之间距离最短,故连接AB,由于垂线段最短可知,过点A作AC⊥直线l于点C,此时AC最短,故答案为:两点之间,线段最短;垂线段最短.【点睛】本题考查作图−应用与设计作图,解题的关键是正确两点之间线段最短以及垂线段最短,本题属于基础题型.三、解答题1、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【解析】【分析】(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.【详解】解:(1)∵EO⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠EOC:∠BOD=7:11,∴∠COE=35°,∠BOD=55°,∴∠DOE=∠BOD+∠BOE=145°;(2)∵MN⊥CD,∴∠COM=90°,∴∠EOM=∠COE+∠COM=125°,∵∠BOD=55°,∴∠BOC=180°-∠BOD=125°,∴∠AOD=∠BOC=125°,∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.2、(1)40°;(2)见解析;(3)70°【解析】【分析】(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;(2)根据题目补充理由和相关结论即可;(3)类似(2)中的方法求解即可.【详解】解:(1)过点F作FN∥AB,∵FN∥AB,∠FEB=130°,∴∠EFN+∠FEB=180°,∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,∵∠EFG=90°,∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,∵AB∥CD,∴FN∥CD,∴∠FGC=∠NFG=40°.故答案为:40°;(2)如图②,过点E作EM∥FG,交CD于点M.∵AB∥CD(已知)∴∠BEM=∠EMC(两直线平行,内错角相等)又∵EM∥FG∴∠FGC=∠EMC(两直线平行,同位角相等)∠EFG+∠FEM=180°(两直线平行,同旁内角互补)即∠FGC=(∠BEM)(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC=90°故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°(3)过点E作EH∥FG,交CD于点H.∵AB∥CD∴∠BEH=∠EHC又∵EM∥FG∴∠FGC=∠EHC∠EFG+∠FEH=180°即∠FGC=∠BEH∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH又∵∠EFG=110°∴∠FEH=70°∴∠FEB﹣∠FGC=70°故答案为:70°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.3、 (1)见解析(2)见解析(3)6【解析】【分析】(1)根据网格作图即可;(2)根据网格作图即可;(3)根据网格作图即可.(1)解:作图如下:(2)解:作图见(1)(3)如图:故符合题意的点F有6个.故答案为:6【点睛】本题考查了直线、射线、线段及平行公理的应用,解题的关键是准确作出图形.4、61.5°【解析】【分析】由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.【详解】解:∵OP平分∠AOC,∠AOC=38°,∴∠AOP=∠COP=∠AOC=×38°=19°,∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,∵ON平分∠POB∴∠PON=∠BOP=×161°=80.5°,∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.【点睛】本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.5、垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行【解析】【分析】根据垂直定义求出∠B=∠CDF=90°,根据平行线的判定得出AB∥EF,EF∥CD,即可得出答案.【详解】证明:∵(己知),∴(垂直定义),∴ABCD(同位角相等,两直线平行),∵(已知),∴(内错角相等,两直线平行),∴(平行于同一条直线的两条直线平行),∴(两直线平行,同位角相等).故答案为:垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行【点睛】本题考查了平行线的判定的应用,能正确运用判定定理进行推理是解此题的关键,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,④平行于同一直线的两直线平行.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试复习练习题,共22页。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后练习题
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试习题,共20页。试卷主要包含了生活中常见的探照灯,下列命题中,是假命题的是,以下命题是假命题的是等内容,欢迎下载使用。