初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后复习题
展开
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后复习题,共21页。试卷主要包含了生活中常见的探照灯,如图,直线AB等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,∠1=∠2,则下列结论正确的是( )
A.AD∥BCB.AB∥CD
C.AD∥EFD.EF∥BC
2、如图,一束平行光线中,插入一张对边平行的纸版,如果光线与纸版右下方所成的∠1是110°,那么光线与纸版左上方所成的∠2的度数是( )
A.110°B.100°C.90°D.70°
3、如图,直线b、c被直线a所截,则与是( )
A.对顶角B.同位角C.内错角D.同旁内角
4、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°
A.B.C.D.
5、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )
A.125°B.115°C.105°D.95°
6、如图,下列给定的条件中,不能判定的是( )
A.B.C.D.
7、如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )
A.15°B.20°C.25°D.30°
8、如果∠A的两边分别垂直于∠B的两边,那么∠A和∠B的数量关系是( )
A.相等B.互余或互补C.互补D.相等或互补
9、如图,直线AB、CD相交于点O,OE平分∠AOD,若∠DOE=36°,则∠BOC的度数为( )
A.72°B.90°C.108°D.144°
10、下列命题不正确的是( )
A.直角三角形的两个锐角互补B.两点确定一条直线
C.两点之间线段最短D.三角形内角和为180°
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知∠1=30°,∠2或∠3满足条件_________,则a∥b.
2、完成下面的证明:
看图填空:已知如图,于,于,,求证:平分.
证明:于,于G(_____),
,(_____).
(_____).
(_____).
_____(_____),
_____(_____).
又(已知),
(_____),
平分(_____).
3、同一平面内,两条直线相交有__________个交点,两条直线相交的特殊位置关系是__________.
4、如图,从A点向已知直线 l 画一条垂直的线段和几条不垂直的线段.
连接直线外一点与直线上各点的所有线段中,______最短.简单说成:垂线段最短.
直线外一点到这条直线的垂线段的长度,叫做______.线段______的长度叫做点A到直线l的距离.
5、在同一平面内,过一点有且只有______直线与已知直线垂直.
注意:
①“过一点”中的点,可以在______,也可以在______;
②“有且只有”中,“有”指存在,“只有”指唯一性.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在6×6的正方形网格中,每个小正方形的边长是1,点M、N、P、Q均为格点(格点是指每个小正方形的顶点),线段MN经过点P.
(1)过点P画线段AB,使得线段AB满足以下两个条件:①AB⊥MN;②;
(2)过点Q画MN的平行线CD,CD与AB相交于点E;
(3)若格点F使得△PFM的面积等于4,则这样的点F共有 个.
2、如图,已知EFAB,∠DEF=∠A.
(1)求证:DEAC;
(2)若CD平分∠ACB,∠BED=60°,求∠ACD的度数.
3、如图,方格纸中每个小正方形的边长都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).
(1)在图①中,过点P画出AB的平行线,过P点画出表示点P到直线AB距离的垂线段;
(2)在图②中,以线段AB、CD、EF的长为边长的三角形的面积等于 .
4、如图,汽车站、高铁站分别位于A、B两点,直线a和b分别表示公路与铁路.
(1)从汽车站到高铁站怎样走最近?画出图形,理由是 .
(2)从高铁站到公路怎样走最近?画出图形,理由是 .
5、如图,的三个顶点A、B、C在正方形网格中,每小方格的边长都为1cm.请在方格纸上画图并回答下列问题:
(1)延长线段AB到点D,使;
(2)过C点画AB的垂线,垂足为点E;
(3)过A点画直线,交直线CE于点F;
(4)点C到直线AB的距离为线段 的长度.
-参考答案-
一、单选题
1、C
【解析】
略
2、A
【解析】
【分析】
根据AB∥CD,BC∥AD,分别得到∠1+∠ADC=180°,∠2+∠ADC=180°,因此∠1=∠2,即可求解.
【详解】
解:如图:
∵AB∥CD,
∴∠1+∠ADC=180°,
∵BC∥AD,
∴∠2+∠ADC=180°,
∴∠1=∠2.
∵∠1=110°,
∴∠2=110°.
故选:A.
【点睛】
本题考查平行线的性质,两直线平行,同旁内角互补.
3、B
【解析】
【分析】
根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
【详解】
∠1与∠2是同位角
故选:B
【点睛】
本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
4、C
【解析】
【分析】
根据平行线的性质可得,进而根据即可求解
【详解】
解:
故选C
【点睛】
本题考查了平行线的性质,掌握平行线的性质是解题的关键.
5、A
【解析】
【分析】
利用互余角的概念与邻补角的概念解答即可.
【详解】
解:∵∠1=35°,∠AOC=90°,
∴∠BOC=∠AOC−∠1=55°.
∵点B,O,D在同一条直线上,
∴∠2=180°−∠BOC=125°.
故选:A.
【点睛】
本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.
6、A
【解析】
【分析】
根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
【详解】
解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
故选A.
【点睛】
本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
7、B
【解析】
【分析】
若使直线b与直线c平行,则∠1=180°-∠2=140°,还差20°,故旋转20°.
【详解】
解:
∵∠1=120°,
∴∠3=180°-120°=60°.
∵∠2=40°,
∴要使b∥c,则∠2=∠3,
∴直线b绕点A逆时针旋转60°-40°=20°.
故选B.
【点睛】
本题考查直线与平行线相交的性质,掌握这些性质是本题关键.
8、D
【解析】
【分析】
由题意直接根据∠A的两边分别垂直于∠B的两边画出符合条件的图形进行判断即可.
【详解】
解:BD⊥AD,CE⊥AB,如图:
∵∠A=90°﹣∠ABD=∠DBC,
∴∠A与∠DBC两边分别垂直,它们相等,
而∠DBE=180°﹣∠DBC=180°﹣∠A,
∴∠A与∠DBE两边分别垂直,它们互补,
故选:D.
【点睛】
本题考查垂线及角的关系,解题关键是根据已知画出符合条件的图形.
9、A
【解析】
【分析】
由角平分线的定义可求得∠AOD的度数,由对顶角相等即可求得结果.
【详解】
∵OE平分∠AOD,
∴∠AOD=2∠DOE=2×36°=72°,
∵∠BOC与∠AOE是对顶角,
∴∠BOC的度数为72°,
故选:A
【点睛】
本题考查了角平分线的定义、对顶角相等等知识,掌握这两个知识是解题的关键.
10、A
【解析】
【分析】
根据直角三角形两锐角互余可直接进行判断.
【详解】
解:A、直角三角形的两个锐角互补,是假命题,符合题意;
B、两点确定一条直线,是真命题,不符合题意;
C、两点之间线段最短,是真命题,不符合题意;
D、三角形内角和为,是真命题,不符合题意;
故选A.
【点睛】
本题考查了假命题的判断,解题的关键是熟练掌握直角三角形两锐角互余.
二、填空题
1、∠2=150°或∠3=30°
【解析】
略
2、已知;垂直定义;等量代换;同位角相等,两直线平行;3,两直线平行,内错角相等;,两直线平行,同位角相等;等量代换;角平分线的定义
【解析】
【分析】
根据平行线的性质,平行线的判定等相关知识解答即可.
【详解】
证明:于,于(已知),
,(垂直定义).
(等量代换).
(同位角相等,两直线平行).
(两直线平行,内错角相等),
(两直线平行,同位角相等).
又(已知),
(等量代换),
平分(角平分线的定义).
故答案为:已知;垂直定义;等量代换;同位角相等,两直线平行;3,两直线平行,内错角相等;,两直线平行,同位角相等;等量代换;角平分线的定义.
【点睛】
本题考查了平行线的性质和判定,垂直即两条直角相交所成的四个角中,有一个直角;角的平分线即从角的顶点出发的射线把角分成两个相等的角,熟练掌握平行线的性质和判定是解题的关键.
3、 1 垂直
【解析】
略
4、 垂线段 点到直线的距离 AD
【解析】
略
5、 一条 已知直线上 已知直线外
【解析】
略
三、解答题
1、 (1)见解析
(2)见解析
(3)6
【解析】
【分析】
(1)根据网格作图即可;
(2)根据网格作图即可;
(3)根据网格作图即可.
(1)
解:作图如下:
(2)
解:作图见(1)
(3)
如图:
故符合题意的点F有6个.
故答案为:6
【点睛】
本题考查了直线、射线、线段及平行公理的应用,解题的关键是准确作出图形.
2、 (1)见解析
(2)30°
【解析】
【分析】
(1)根据EFAB,可得∠BDE=∠DEF,又∠DEF=∠A等量代换可得∠BDE=∠A,进而可得DEAC;
(2)根据(1)的结论可得,根据角平分线的定义即可求得∠ACD的度数.
(1)
∵EFAB,
∴∠BDE=∠DEF,
又∠DEF=∠A
∴∠BDE=∠A,
∴DEAC;
(2)
DEAC,∠BED=60°,
CD平分∠ACB,
【点睛】
本题考查了平行线的性质与判定,角平分线的意义,掌握平行线的性质与判定是解题的关键.
3、 (1)见解析
(2)4
【解析】
【分析】
(1)直接利用网格结合勾股定理得出答案;
(2)利用平移的性质得出以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积,进而得出答案.
(1)
解:如图①所示:MN∥AB,PD⊥AB;
,
(2)
解:如图②所示:
以线段AB、CD、EF的长为边长的三角形的面积等于△ABM的面积为:
3×4-×1×2-×2×3-×2×4=4.
故答案为:4.
【点睛】
本题主要考查了应用设计与作图,正确平移线段是解题关键.
4、(1)连接AB,两点之间,线段最短;
(2)过B作BC⊥a,垂线段最短.
【解析】
【分析】
(1)连接AB,根据两点之间,线段最短;
(2)过B作BC⊥a,根据垂线段最短.
【详解】
解:如图所示:
(1)沿AB走,两点之间线段最短;
(2)沿BC走,垂线段最短.
【点睛】
此题主要考查了应用与设计作图,关键是掌握线段的性质和垂线段的性质.
5、 (1)AB=BD,见详解;
(2)CE⊥AD于E,见详解;
(3)AF∥BC;见详解;
(4)CE.
【解析】
【分析】
(1)根据网格的性质,线段中点定义,得出BD=3,延长即可;
(2)根据网格的性质,利用点平移方法即可画出CE⊥AD;
(3)根据网格中小正方形对角线的性质,即可画出AF∥BC;
(4)根据网格的性质, CE⊥AB,根据点到直线的距离得出CE的长即可得
(1)
解:根据题意,得AB=3cm,在AB的延长线上,截取BD=3
则AB=BD,如图所示:
(2)
解:如图所示:点C向下平移2个单位取点E,连结CE,则CE⊥AD于E;
(3)
解:如图所示:∵BE=2=CE,AB=3,
∴AE=AB+BE=3+2=5,
∴点C向上平移3个格到点F,连结AF,则AF∥BC,
∵AF是正方形网格的对角线,CB是正方形网格的对角线,
∴∠FAB=45°,∠CBE=45°,
∵∠FAB=∠CBE=45°,
∴AF∥BC;
(4)
点C到直线AB的距离为线段CE的长度.
故答案为CE.
【点睛】
此题主要考查正方形网格中的作图综合问题,熟练掌握网格的性质,中点定义,垂线定义,平行线判定与性质,点到直线的距离是解题关键.
相关试卷
这是一份2021学年第七章 相交线与平行线综合与测试一课一练,共22页。试卷主要包含了下列说法正确的有,下列命题中,是真命题的是,下列说法正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试复习练习题,共22页。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后作业题,共23页。试卷主要包含了如图,直线AB∥CD,直线AB,下列A,下列命题中,是真命题的是等内容,欢迎下载使用。