冀教版七年级下册第七章 相交线与平行线综合与测试练习题
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试练习题,共21页。试卷主要包含了如图,直线AB∥CD,直线AB,下列命题中,是真命题的是等内容,欢迎下载使用。
冀教版七年级数学下册第七章相交线与平行线专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )A.15° B.20° C.25° D.30°2、如图,,交于点,,,则的度数是( )A.34° B.66° C.56° D.46°3、如图,点E在的延长线上,能判定的是( )A. B.C. D.4、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )A.30° B.40° C.50° D.60°5、如图所示,∠1和∠2是对顶角的图形共有( )A.0个 B.1个 C.2个 D.3个6、如图所示,AB∥CD,若∠2=2∠1﹣6°,则∠2等于( )A.116° B.118° C.120° D.124°7、如图,与交于点,与互余,,则的度数为( )A. B. C. D.8、如图,△ABC沿BC方向平移到△DEF的位置,若BE=3cm,则平移的距离为( )A.1cm B.2cm C.3cm D.4cm9、下列命题中,是真命题的是( )A.两直线平行,同旁内角相等 B.内错角相等,两直线平行C.直角三角形的两锐角互补 D.三角形的一个外角大于任何一个内角10、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )A.4个 B.3个 C.2个 D.1个第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、在平面内,把一个图形沿某一方向移动一定的距离,会得到一个新图形. 图形的这种移动叫做平移变换,简称_________.平移的性质:(1)新图形与原图形形状和大小_________,位置_________.(2)对应点的连线_________.2、将一把直尺和一块含30°角的直角三角板按如图所示方式摆放,其中∠CBD=90°,∠BDC=30°,若∠1=78°,则∠2的度数为________.3、下列说法:①对顶角相等;②两点之间的线段是两点间的距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤一个锐角的补角一定比它的余角大90°,正确的有______.(填序号)4、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.5、按要求完成下列证明:如图,点,,分别是三角形的边,,上的点,,.求证:.证明:, ., . .三、解答题(5小题,每小题10分,共计50分)1、如图,在方格纸中,每个小正方形的边长为一个长度单位,点A、B、C都在格点上.(1)画出线段BC;(2)将线段BC向上平移三个单位,得到线段DE,在图中画出线段DE;(3)三角形ADE的面积= .2、如图,方格纸中每个小正方形的边长为1cm,点A、B、C均为格点.(1)根据要求画图:①过C点画直线MN∥AB;②过点C画AB的垂线,垂足为D点.(2)图中线段 的长度表示点A到直线CD的距离;(3)三角形ABC的面积= cm2.3、如图,已知GH、MN分别平分∠AGE、∠DMF,且∠AGH=∠DMN,试说明ABCD的理由.4、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.(1)如图1,求∠DOE的度数;(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.5、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数. -参考答案-一、单选题1、B【解析】【分析】若使直线b与直线c平行,则∠1=180°-∠2=140°,还差20°,故旋转20°.【详解】解: ∵∠1=120°,∴∠3=180°-120°=60°.∵∠2=40°,∴要使b∥c,则∠2=∠3,∴直线b绕点A逆时针旋转60°-40°=20°.故选B.【点睛】本题考查直线与平行线相交的性质,掌握这些性质是本题关键.2、C【解析】【分析】由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵,,∴,∵,∴,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.3、B【解析】【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.【详解】A. ,,故该选项不符合题意;B. ,,故该选项符合题意;C. ,,故该选项不符合题意; D. ,,故该选项不符合题意;故选B【点睛】本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.4、C【解析】【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.5、B【解析】【分析】对顶角:有公共的顶点,角的两边互为反向延长线,根据定义逐一判断即可.【详解】只有(3)中的∠1与∠2是对顶角.故选B【点睛】本题考查了对顶角的定义,理解对顶角的定义是解题的关键.6、B【解析】【分析】由AB与CD平行,利用两直线平行同旁内角互补得到∠2+∠3=180°,由对顶角相等得到∠1=∠3,等量代换得到∠1=180°-∠2,再代入∠2=2∠1﹣6°,即可求出∠2的度数.【详解】解:如图:∵AB∥CD,∴∠2+∠3=180°,∴∠3=180°-∠2,∵∠1=∠3,∴∠1=180°-∠2,∴∠2=2(180°-∠2)﹣6°,∴∠2=118°,故选:B.【点睛】此题考查了对顶角性质和平行线的性质,掌握两直线平行同旁内角互补是解答此题的关键.7、B【解析】【分析】先由与互余,求解 再利用对顶角相等可得答案.【详解】解:与互余,,,,,故选:B.【点睛】本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.8、C【解析】【分析】根据题意可得 的长度等于平移的距离,即可求解.【详解】∵△ABC沿BC方向平移到△DEF的位置,∴点 的对应点为 ,即 的长度等于平移的距离,∵BE=3cm,∴平移的距离为3cm.故选:C【点睛】本题主要考查了图形的平移,熟练掌握平移的距离都等于对应点间长度是解题的关键.9、B【解析】【分析】利用三角形的性质、平行线的性质和判定进行判断即可.【详解】解:两直线平行,同旁内角互补,故A是假命题;内错角相等,两直线平行,故B是真命题;直角三角形的两锐角互余,故C是假命题;三角形的一个外角大于任何一个和它不相邻的内角,故D是假命题;故答案为B.【点睛】本题考查的是命题的真假判断,熟练准确掌握基础知识是解答本题的关键.10、B【解析】【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF,∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE,∴当∠AOF=50°时,∠DOE=50°;故①正确;∵OB平分∠DOG,∴∠BOD=∠BOG,∴∠BOD=∠BOG=∠EOF=∠AOC,故④正确;∵,∴∠BOD=180°-150°=30°,∴故③正确;若为的平分线,则∠DOE=∠DOG,∴∠BOG+∠BOD=90°-∠EOE,∴∠EOF=30°,而无法确定,∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.二、填空题1、 平移 完全相同 不同 平行且相等【解析】略2、18°##18度【解析】【分析】根据平角及已知条件可得,由平行线的性质可得,结合图形求解即可得.【详解】解:∵,,∴,∵四边形AEGH为矩形,∴,∴,∵,∴,故答案为:.【点睛】题目主要考查角度的计算及平行线的性质,理解题意,结合图形求角度是解题关键.3、①⑤【解析】【分析】根据对顶角、线段、直线、垂直的定义、平行线的性质及余补角的性质可直接进行求解.【详解】解:①对顶角相等,原说法正确;②两点之间的线段长度是两点间的距离,原说法错误;③过直线外一点有且只有一条直线与已知直线平行,原说法错误;④在同一平面内,过一点有且只有一条直线与已知直线垂直,原说法错误;⑤一个锐角的补角一定比它的余角大90°,原说法正确;综上所述:正确的有①⑤;故答案为①⑤.【点睛】本题主要考查对顶角、线段、直线、垂直的定义、平行线的性质及余补角的性质,熟练掌握相关概念及性质是解题的关键.4、【解析】【分析】先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.【详解】解:,,是的平分线,,,故答案为:.【点睛】本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.5、,两直线平行,内错角相等;,等量代换;同位角相等,两直线平行【解析】【分析】由题意知由两直线平行,内错角相等可得,由,可知.【详解】解:证明: 两直线平行,内错角相等)(已知)(等量代换)(同位角相等,两直线平行)故答案为:,两直线平行,内错角相等;,等量代换;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定.解题的关键在于用角的数量关系判断两直线的位置关系.三、解答题1、(1)见解析;(2)见解析;(3)8【解析】【分析】(1)连接B、C两点即可;(2)根据平移的定义,得出对应点的位置,连接即可;(3)根据三角形的面积公式计算即可.【详解】解:(1)线段BC如图所示,(2)线段DE如图所示,(3)三角形ADE的面积=【点睛】本题考查作图-平移变换.解题的关键是熟练掌握平移变换的性质.2、 (1)画图见详解.(2)AD##DA(3)2.5####【解析】【分析】(1)①根据方格纸的特点,过C点与AB平行的直线MN,应是过点C的相连的三个横方格左下角到右上角连成的对角线所在的直线.②过C点与AB垂直的直线CD,应是过点C的相连的三个竖方格左上角到右下角连成的对角线所在的直线.(2)因为CD与AB垂直,所以点A到CD的距离就是线段AD的长度.(3)三角形ABC的面积等于三角形所在的方格所形成的长方形的面积减掉三个小三角形的面积.(1)如图所示①直线MN即为所求作的图形;②CD即为所求的AB的垂线;(2)∵CD⊥AB∴点A到直线CD的距离就是线段AD的长度.(3)三角形ABC的面积=3×2-(1×2÷2+1×2÷2+1×3÷2)=6-3.5=2.5(cm2)【点睛】本题考查了作图-应用与设计作图、点到直线的距离、平行线的判定和性质、三角形的面积,解决本题的关键是准确画图.3、见解析【解析】【分析】根据角平分线的意义可得∠AGE=2∠AGH,∠DMF=2∠DMN,等量代换可得∠DMF=∠FGB,根据平行线的判定定理即可求得ABCD【详解】∵GH平分∠AGE,∴∠AGE=2∠AGH同理∠DMF=2∠DMN∵∠AGH=∠DMN∴∠AGE=∠DMF又∵∠AGE=∠FGB ∴∠DMF=∠FGB ∴ABCD (同位角相等,两直线平行).【点睛】本题考查了平行线的判定定理,角平分线的意义,掌握平行线的判定定理是解题的关键.4、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【解析】【分析】(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.【详解】解:(1)∵EO⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠EOC:∠BOD=7:11,∴∠COE=35°,∠BOD=55°,∴∠DOE=∠BOD+∠BOE=145°;(2)∵MN⊥CD,∴∠COM=90°,∴∠EOM=∠COE+∠COM=125°,∵∠BOD=55°,∴∠BOC=180°-∠BOD=125°,∴∠AOD=∠BOC=125°,∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.5、61.5°【解析】【分析】由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.【详解】解:∵OP平分∠AOC,∠AOC=38°,∴∠AOP=∠COP=∠AOC=×38°=19°,∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,∵ON平分∠POB∴∠PON=∠BOP=×161°=80.5°,∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.【点睛】本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.
相关试卷
这是一份2021学年第七章 相交线与平行线综合与测试习题,共22页。试卷主要包含了如图,不能推出a∥b的条件是,下列命题是真命题的是,如图,点P是直线m外一点,A等内容,欢迎下载使用。
这是一份冀教版第七章 相交线与平行线综合与测试课堂检测,共20页。试卷主要包含了下列说法正确的是,直线,如图,点P是直线m外一点,A,如图,不能推出a∥b的条件是等内容,欢迎下载使用。
这是一份初中第七章 相交线与平行线综合与测试复习练习题,共26页。试卷主要包含了下列说法错误的是,下列说法正确的有等内容,欢迎下载使用。