冀教版七年级下册第六章 二元一次方程组综合与测试课时作业
展开冀教版七年级下册第六章二元一次方程组专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、在下列各组数中,是方程组的解的是( )
A. B. C. D.
2、根据大马和小马的对话求大马和小马各驮了几包货物.
大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”
小马说:“我还想给你1包呢!”
大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”
小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )
A.x+1=2y B.x+1=2(y﹣1)
C.x﹣1=2(y﹣1) D.y=1﹣2x
3、用代入消元法解二元一次方程组,将①代入②消去x,可得方程( )
A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=x+2 D.x﹣2(x﹣2)=0
4、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )
A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想
5、若关于x,y的方程是二元一次方程,则m的值为( )
A.﹣1 B.0 C.1 D.2
6、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为( ).
A. B.
C. D.
7、如图,分别用火柴棍连续搭建等边三角形和正六边形,公共边只用一根火柴棍.如果搭建等边三角形和正六边形共用了2018根火柴,并且等边三角形的个数比正六边形的个数多7,那么连续搭建的等边三角形的个数是( )
A.291 B.292 C.293 D.294
8、若方程组的解为,则方程组的解为( )
A. B.
C. D.
9、已知是二元一次方程的一组解,则m的值是( )
A. B.3 C. D.
10、已知a,b满足方程组则的值为( )
A. B.4 C. D.2
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、请写出一个二元一次方程组______,使它的解为.
2、凤鸣文具厂生产的一种文具套装深受学生喜爱,已知该文具套装一套包含有1个笔袋,2只笔,3个笔记本,某文具超市向该厂订购了一批文具套装,需要厂家在15天内生产完该套装并交货.凤鸣文具厂将员工分为A、B、C三个组,分别生产笔袋、笔、笔记本,他们于某天零点开始工作,每天24小时轮班连续工作(假设每小时工作效率相同),若干天后的零点A组完成任务,再过几天后(不少于一天)的中午12点B组完成任务,再过几天(不少于一天)后的早晨6时C组完成任务.已知A、B、C三个组每天完成的任务数分别是270个、360个、360个,则该文具超市至少一共订购了 _____套文具套装.
3、如果将方程变形为用含的式子表示,那么_______.
4、一元一次方程的一般形式为:______(a,b为常数,a≠0);一元一次不等式的一般形式为:______或______(a,b为常数,a≠0);二元一次方程的一般形式为:______(a,b,c为常数,a≠0,b≠0)
5、假设渝北某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满,2021年五一节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过___小时车库恰好停满.
三、解答题(5小题,每小题10分,共计50分)
1、为了做好学校疫情防控工作,某中学开学前需备足防疫物资,准备购买N95口罩(单位:只)和医用外科口罩(单位:包)若干.根据标价,已知购买10只N95口罩和9包医用外科口罩共需236元,购买一只N95口罩的费用是购买一包医用外科口罩费用的5倍.
(1)求一只N95口罩和一包医用外科口罩的标价各是多少元?
(2)市场上现有甲、乙两所医疗机构对该中学的采购给出如下的优惠方案:甲医疗机构:购买的口罩按标价结算,但每购买一只N95口罩赠送一包医用外科口罩;乙医疗机构:购买的口罩全部按标价打九折结算.若该中学准备购买1000只N95口罩和6000包医用外科口罩,考虑配送成本等其他因素,只能一次性从其中一家采购,问选择哪所医疗机构更省钱?
2、对于一个各个数位上的数字均不为零的三位自然数,若的十位数字等于百位数字与个位数字之和,则称这个自然数为“三峡数”.当三位自然数为“三峡数”时,交换的百位数字和个位数字后会得到一个三位自然数,规定.例如:当时,因为,所以583是“三峡数”;此时,则.
(1)判断341和153是否是“二峡数”?并说明理由;
(2)求的值;
(3)若三位自然数(即的百位数字是,十位数字是,个位数字是,,,,是整数,)为“三峡数”,且时,求满足条件的所有三位自然数.
3、解方程组:.
4、某单位用汽车和火车向疫区用输两批防疫物资,具体运输情况如下表所示,求每辆汽车和每节火车车厢平均各装物资多少吨?
| 所用汽车数量(辆) | 所用火车车厢数量(节) | 运输物资总量(吨) |
第一批 | 5 | 2 | 140 |
第二批 | 3 | 4 | 224 |
5、解方程组:
(1)
(2)
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据二元一次方程组的解可把选项逐一代入求解即可.
【详解】
解:∵
∴把代入方程①得:,代入②得:,所以该解不是方程组的解,故A选项不符合题意;
把代入方程①得:,代入②得:,所以该解不是方程组的解,故B选项不符合题意;
把代入方程①得:,代入②得:,所以该解不是方程组的解,故C选项不符合题意;
把代入方程①得:,代入②得:,所以该解是方程组的解,故D选项符合题意;
故选D.
【点睛】
本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.
2、B
【解析】
【分析】
设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.
【详解】
解:设大马驮x袋,小马驮y袋.
根据题意,得.
故选:B.
【点睛】
此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.
3、B
【解析】
【分析】
把x﹣2y=0中的x换成(y+2)即可.
【详解】
解:用代入消元法解二元一次方程组,将①代入②消去x,
可得方程(y+2)﹣2y=0,
故选:B.
【点睛】
此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.
4、A
【解析】
【分析】
通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.
【详解】
解:在解二元一次方程组时,
将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,
从而将二元一次方程降次转化为一元一次方程求解,
这种解法体现的数学思想是:转化思想,
故选:A.
【点睛】
本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.
5、C
【解析】
【分析】
根据二元一次方程的定义得出且,再求出答案即可.
【详解】
解:∵关于x,y的方程是二元一次方程,
∴且,
解得:m=1,
故选C.
【点睛】
本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.
6、B
【解析】
【分析】
设绳子长x尺,长木长y尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x,y的二元一次方程组.
【详解】
解:设绳子长x尺,长木长y尺,
依题意,得:,
故选:B.
【点睛】
本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.
7、C
【解析】
【分析】
设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2018根火柴棍,并且三角形的个数比正六边形的个数多7个,列方程组求解即可.
【详解】
解:设连续搭建等边三角形x个,连续搭建正六边形y个,
由题意,得,
解得.
故选C.
【点睛】
本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.
8、B
【解析】
【分析】
由整体思想可得,求出x、y即可.
【详解】
解:∵方程组的解为,
∴方程组的解,
∴;
故选:B.
【点睛】
本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.
9、A
【解析】
【分析】
把代入5x+3y=1即可求出m的值.
【详解】
把代入5x+3y=1,得
10+3m=1,
∴m=-3,
故选A.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
10、A
【解析】
【分析】
求出方程组的解得到a与b的值,即可确定出-a-b的值.
【详解】
解:,
①+②×5得:16a=32,即a=2,
把a=2代入①得:b=2,
则-a-b=-4,
故选:A.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
二、填空题
1、(答案不唯一)
【解析】
【分析】
根据二元一次方程组的解找到x与y的数量关系,然后列出方程组即可.
【详解】
解:∵二元一次方程组的解为,
∴这个方程组可以是,
故答案为:(答案不唯一),
【点睛】
本题考查的是二元一次方程组解的定义,解答此题的关键是把方程的解代入各组方程中,看各方程是否成立.
2、1350
【解析】
【分析】
设A组工作x天,B组工作(x+m+)天,C组工作(x+m++n+)(x,m,n都是正整数且m≥1,n≥1),x+m++n+<15,根据该文具套装一套包含有1个笔袋,2只笔,3个笔记本,列方程组求方程组的整数解即可.
【详解】
解:设A组工作x天,B组工作(x+m+)天,C组工作(x+m++n+)(x,m,n都是正整数且m≥1,n≥1),x+m++n+<15
根据题意
由①得③
由②得④
④-5×③得
∵m,n均为正整数,
∴m为奇数,
当m=1,n=2,x=5,x+m++n+=8<15;
当m=3,n=5,x=7,x+m++n+=15>15不合题意;
A组一共工作5天,270×5=1350个
该文具超市至少一共订购了1350套文具套装.
故答案为1350.
【点睛】
本题考查列三元一次方程组解应用题,方程的整数解,利用一套中的比例列方程组,得出是解题关键.
3、
【解析】
【分析】
先移项,再系数化为1即可.
【详解】
解:移项,得:,
方程两边同时除以,得:,
故答案为:.
【点睛】
本题考查了解二元一次方程,将x看作常数,把y看做未知数,灵活应用等式的性质求解是关键.
4、 ax+b=0 ax+b≥0 ax+b≤0 ax+by+c=0
【解析】
略
5、##
【解析】
【分析】
设1个进口1小时开进x辆车,1个出口1小时开出y辆,车位总数为a,然后根据题意可列方程组进行求解.
【详解】
解:设1个进口1小时开进x辆车,1个出口1小时开出y辆,车位总数为a,由题意得:
,
解得:,
则(小时);
故答案为.
【点睛】
本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.
三、解答题
1、(1)一只N95口罩20元,一包医用外科口罩4元;(2)选择乙医疗机构更省钱
【解析】
【分析】
(1)设一只N95口罩x元,一包医用外科口罩y元,根据购买10只N95口罩和9包医用外科口罩共需236元,购买一只N95口罩的费用是购买一包医用外科口罩费用的5倍列出二元一次方程组即可;
(2)分别算出两个机构的费用,比较大小即可.
【详解】
(1)设一只N95口罩x元,一包医用外科口罩y元,根据题意得,
,解得:,
所以一只N95口罩20元,一包医用外科口罩4元;
(2)单独去甲医疗机构买总费用为:(元);
单独去乙医疗机构买总费用为:(元);
,
∴选择乙医疗机构更省钱.
【点睛】
本题考查了二元一次方程组的应用,解题关键是熟练掌握题目中的数量关系,找到等量关系列出方程.
2、 (1)341是“三峡数”,153不是“三峡数”,理由见解析
(2)
(3)所有满足条件的是671、792
【解析】
【分析】
(1)根据三峡数的定义分析即可;
(2)根据计算;
(3)根据列出关于a、b的二元一次方程,然后根据,求解;
(1)
341是“三峡数”,∵,∴341是“三峡数”;
153不是“三峡数”,∵,∴153不是“三峡数”;
(2)
;
(3)
由题知(,,,是整数),
则,
∴,
,
则(,,,是整数),
,,
,
答:所有满足条件的是671、792.
【点睛】
本题考查了新定义,以及解二元一次方程,正确理解“三峡数”的定义是解答本题的关键.
3、.
【解析】
【分析】
根据加减法解一元二次方程即可.
【详解】
解:
①×2+②得:
解得
将代入到①得
方程组的解为:
【点睛】
本题考查了解二元一次方程组,掌握解二元一次方程组是解题的关键.
4、每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨
【解析】
【分析】
设每辆汽车平均装物资x吨,每节火车车厢平均装物资y吨,列方程得,计算即可.
【详解】
解:设每辆汽车平均装物资x吨,每节火车车厢平均装物资y吨
根据题意得:,
解得: .
答:每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨.
【点睛】
此题考查了二元一次方程组的实际应用,正确理解题意是解题的关键.
5、(1);(2)
【解析】
【分析】
(1)利用加减法求解;
(2)先将方程整理,再利用加减法求出方程组的解.
【详解】
解:(1),
①×5+②,14x=-14,
解得x=-1,
把x=-1代入①,-2+y=-5,
解得y=-3,
∴原方程组的解是;
(2)方程组整理得
由①+②得:6x=18,
∴x=3,
把x=3代入①得:,
所以方程组的解为.
【点睛】
此题考查了解二元一次方程组,正确掌握解二元一次方程组的解法:代入消元法及加减消元法是解题的关键.
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步练习题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了已知,则,若是方程组的解,则的值为等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试课后测评: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共17页。试卷主要包含了在一次爱心捐助活动中,八年级,已知是二元一次方程,则的值为,已知x,y满足,则x-y的值为等内容,欢迎下载使用。
七年级下册第六章 二元一次方程组综合与测试课后练习题: 这是一份七年级下册第六章 二元一次方程组综合与测试课后练习题,共19页。试卷主要包含了已知是二元一次方程,则的值为等内容,欢迎下载使用。