![2022年冀教版七年级下册第七章相交线与平行线综合测评练习题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12717718/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级下册第七章相交线与平行线综合测评练习题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12717718/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级下册第七章相交线与平行线综合测评练习题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12717718/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第七章 相交线与平行线综合与测试习题
展开这是一份冀教版七年级下册第七章 相交线与平行线综合与测试习题,共23页。试卷主要包含了下列A,以下命题是假命题的是,下列命题中,为真命题的是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
2、如图,已知AB∥CD,∠1=30°,∠2=90°,则∠3等于( )
A.60° B.50° C.45° D.30°
3、如图,某位同学将一副三角板随意摆放在桌上,则图中的度数是( )
A.70° B.80° C.90° D.100°
4、下列A、B、C、D四幅图案中,能通过平移图案得到的是( )
A. B.
C. D.
5、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于( )
A.25° B.27° C.29° D.45°
6、如图,给出下列条件,①∠1=∠2,②∠3=∠4,③ADBE,且∠D=∠B,④ADBE,且∠DCE=∠D,其中能推出ABDC的条件为( )
A.①② B.②③ C.③④ D.②③④
7、如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EFHC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①ADBC;②GK平分∠AGC;③∠DGH=37°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有( )
A.4个 B.3个 C.2个 D.1个
8、以下命题是假命题的是( )
A.的算术平方根是2
B.有两边相等的三角形是等腰三角形
C.三角形三个内角的和等于180°
D.过直线外一点有且只有一条直线与已知直线平行
9、下列命题中,为真命题的是( )
A.若,则 B.若,则
C.同位角相等 D.对顶角相等
10、如图,直线AB和CD相交于点O,下列选项中与∠AOC互为邻补角的是( )
A.∠BOC B.∠BOD C.∠DOE D.∠AOE
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____
2、将长度为5cm的线段向上平移10cm,所得线段的长度是_______cm.
3、如图,AD∥BC,AC与BD相交于点O,则图中面积相等的三角形共有___对.
4、如图,已知AD∥CE,∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠AFC的余角等于2∠ABC的补角,则∠BAH的度数是______.
5、平行线的判定:
(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单说成:_____相等,两直线平行
符号语言:
∵ ∠1=∠2(已知)
∴ a∥b( )
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单说成:_____相等,两直线平行.
符号语言:
∵ ∠1=∠3(已知)
∴ a∥b( )
(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简单说成:_____互补,两直线平行.
符号语言:
∵ ∠1+∠4= 180°(已知)
∴ a∥b( )
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知点A,B,C,D是不在同一直线上的四个点,请按要求画出图形.
(1)画直线AB和射线CB;
(2)连接AC,过点C画直线AB的垂线,垂足为E;
(3)在直线AB上找一点P,连接PC、PD,使的和最短.
2、如图,已知AB∥CD,BE平分∠ABC,DB平分∠CDF,且∠ABC+∠CDF=180°.
求证:BE⊥DB.
证明:∵AB∥CD
∴∠ABC=∠BCD( )
∵∠ABC+∠CDF=180°( )
∴∠BCD+∠CDF=180°( )
∴BC∥DF( )
于是∠DBC=∠BDF( )
∵BE平分∠ABC,DB平分∠CDF
∴∠EBC=∠ABC,∠BDF= ( )
∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF)
即∠EBD=
∴BE⊥DB( )
3、已知:如图,,.求证:.
4、如图,已知∠MON=60°,点A在射线OM上,点B在射线ON下方.请选择合适的画图工具按要求画图并回答问题.(要求:不写画法,保留画图痕迹)
(1)过点A作直线l,使直线l只与∠MON的一边相交;
(2)在射线ON上取一点C,使得OC=OA,连接AC,度量∠OAC的大小为 °;(精确到度)
(3)在射线ON上作一点P,使得AP+BP最小,作图的依据是 .
5、如图,直线AB、CD相交于点O,,过点O画,O为垂足,求的度数.
-参考答案-
一、单选题
1、D
【解析】
略
2、A
【解析】
略
3、C
【解析】
【分析】
如图(见解析),过点作,先根据平行线的性质可得,再根据角的和差即可得.
【详解】
解:如图,过点作,
,
,
,
,
故选:C.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.
4、D
【解析】
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
【详解】
解:由平移的性质可知,不改变图形的形状、大小和方向,只有D选项符合要求,
故选:D.
【点睛】
本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.
5、B
【解析】
【分析】
根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.
【详解】
解:∵AD∥BC,
∴∠ABC=∠DAB=54°,∠EBC=∠E,
∵BE平分∠ABC,
∴∠EBC=∠ABC=27°,
∴∠E=27°.
故选:B.
【点睛】
本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.
6、B
【解析】
【分析】
根据平行线的判定逐个判断即可.
【详解】
①∠1=∠2,
②∠3=∠4,
③ADBE,
∠D=∠B,
④∠DCE=∠D,
能推出ABDC的条件为②③
故选B
【点睛】
本题考查了平行线的性质与判定定理,掌握平行线的判定定理是解题的关键.
7、B
【解析】
【分析】
根据平行线的判定定理得到AD∥BC,故①正确;由平行线的性质得到∠AGK=∠CKG,等量代换得到∠AGK=∠CGK,求得GK平分∠AGC;故②正确;根据题意列方程得到∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,得到∠AGK=α+β,根据角平分线的定义即可得到结论.
【详解】
解:∵∠EAD=∠D,∠B=∠D,
∴∠EAD=∠B,
∴AD∥BC,故①正确;
∴∠AGK=∠CKG,
∵∠CKG=∠CGK,
∴∠AGK=∠CGK,
∴GK平分∠AGC;故②正确;
∵∠FGA的余角比∠DGH大16°,
∴90°-∠FGA-∠DGH=16°,
∵∠FGA=∠DGH,
∴90°-2∠FGA=16°,
∴∠FGA=∠DGH=37°,故③正确;
设∠AGM=α,∠MGK=β,
∴∠AGK=α+β,
∵GK平分∠AGC,
∴∠CGK=∠AGK=α+β,
∵GM平分∠FGC,
∴∠FGM=∠CGM,
∴∠FGA+∠AGM=∠MGK+∠CGK,
∴37°+α=β+α+β,
∴β=18.5°,
∴∠MGK=18.5°,故④错误,
故选:B.
【点睛】
本题考查了平行线的判定和性质,角平分线的定义,对顶角性质,一元一次方程,正确的识别图形是解题的关键.
8、A
【解析】
【分析】
分别利用算术平方根、等腰三角形的判定、三角形内角和公式、平行的相关内容,进行分析判断即可.
【详解】
解:A、的算术平方根应该是, A是假命题,
B、有两边相等的三角形是等腰三角形,B是真命题,
C、三角形三个内角的和等于180°,C是真命题,
D、过直线外一点有且只有一条直线与已知直线平行,D是真命题,
故选:A.
【点睛】
本题主要是考查了真假命题,正确的命题为真命题,错误的命题为假命题,根据所学知识,对各个命题的正确与否进行分析,这是解决该题的关键.
9、D
【解析】
【分析】
利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
【详解】
解:A、若,则或,故A错误.
B、当时,有,故B错误.
C、两直线平行,同位角相等,故C错误.
D、对顶角相等,D正确.
故选:D .
【点睛】
本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
10、A
【解析】
【详解】
解:图中与互为邻补角的是和,
故选:A.
【点睛】
本题考查了邻补角,熟练掌握邻补角的定义(两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角)是解题关键.
二、填空题
1、
【解析】
【分析】
先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.
【详解】
解:
∠EFG+∠EGD=150°,
∠EGD=
折叠
故答案为:.
【点睛】
本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.
2、5
【解析】
【分析】
根据平移的性质解答.
【详解】
解:将长度为5cm的线段向上平移10cm,所得线段的长度是5cm,
故答案为:5.
【点睛】
此题考查了平移的性质:平移前后的图形全等,熟记平移的性质是解题的关键.
3、3
【解析】
【分析】
根据平行线的性质可得到两对同底同高的三角形,△AOB与△DOC由△ADC与△DAB减去△ADO得到,故面积相等的三角形有三对.
【详解】
解:根据平行线的性质知,△ADC与△DAB,△ABC与DCB都是同底等高的三角形,△AOB与△DOC由△ADC与△DAB减去△ADO得到,
所以面积相等的三角形有三对,
故答案为:3.
【点睛】
本题考查了平行线间的距离,三角形的面积的公式,熟记平行线间的距离处处相等是解题的关键.
4、60°##60度
【解析】
【分析】
设∠BAF=x°,∠BCF=y°,由题意知∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,如图,过点B作BM∥AD,过点F作FN∥AD,由AD∥CE可得AD∥FN∥BM∥CE,有∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,ABM=∠BAH=2x°,∠CBM=∠GCB=y°,∠AFC=(x+2y)°,∠ABC=(2x+y)°由于∠F的余角等于2∠B的补角,可知90﹣(x+2y)=180﹣2(2x+y),进行求解可得x的值,进而可求出∠BAH的值.
【详解】
解:设∠BAF=x°,∠BCF=y°
∵∠BCF=∠BCG,CF与∠BAH的平分线交于点F
∴∠HAF=∠BAF=x°,∠BCG=∠BCF=x°,∠BAH=2x°,∠GCF=2y°,
如图,过点B作BM∥AD,过点F作FN∥AD
∵AD∥CE
∴AD∥FN∥BM∥CE
∴∠AFN=∠HAF=x°,∠CFN=∠GCF=2y°,∠ABM=∠BAH=2x°,∠CBM=∠GCB=y°
∴∠AFC=(x+2y)°,∠ABC=(2x+y)°
∵∠AFC的余角等于2∠ABC的补角
∴90﹣(x+2y)=180﹣2(2x+y)
解得:x=30
∴∠BAH=60°
故答案为:60°.
【点睛】
本题考查了角平分线,平行线的性质,余角、补角等知识.解题的关键在于正确的表示角度之间的数量关系.
5、 同位角 同位角相等,两直线平行 内错角 内错角相等,两直线平行 同旁内角 同旁内角互补,两直线平行
【解析】
略
三、解答题
1、 (1)见解析
(2)见解析
(3)见解析
【解析】
【分析】
(1)根据直线和射线的定义,即可求解;
(2)根据垂线的定义,即可求解;
(3)根据题意可得:PC+PD≥CD,从而得到当P、C、D三点共线时,PC+PD的和最短,即可求解.
(1)
解:直线AB和射线CB即为所求,如图所示;
(2)
如图,直线CE即为所求;
(3)
连接CD交AB于点P,如图所示,点P即为所求
根据题意得:PC+PD≥CD,
∴当P、C、D三点共线时,PC+PD的和最短.
【点睛】
本题主要考查了直线、射线、线段、垂线的定义,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线上两个点和它们之间的部分叫做线段;当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足是解题的关键.
2、两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义.
【解析】
【分析】
结合条件与图形,读懂每一步推理及推理的依据,即可完成解答.
【详解】
∵AB∥CD,
∴∠ABC=∠BCD(两直线平行,内错角相等),
∵∠ABC+∠CDF=180°(已知),
∴∠BCD+∠CDF=180°(等量代换),
∴BC∥DF(同旁内角互补,两直线平行),
于是∠DBC=∠BDF(两直线平行,内错角相等),
∵BE平分∠ABC,DB平分∠CDF,
∴∠EBC=∠ABC,∠BDF=∠CDF(角平分线定义),
∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF),
即∠EBD=90°,
∴BE⊥DB(垂直的定义).
故答案分别为;两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义
【点睛】
本题考查了平行线的判定与性质,角平分线的定义及垂直的定义等知识,根据题意读懂每步推理,弄清每步推理的依据是完成本题的关键.
3、见解析
【解析】
【分析】
由题意得到∠1=∠A,再根据同位角相等,两直线平行即可得解.
【详解】
证明:,,
,
.
【点睛】
本题考查平行线的判定,熟记同位角相等,两直线平行是解题的关键.
4、 (1)见解析
(2)见解析,60
(3)见解析,两点之间,线段最短
【解析】
【分析】
(1)根据相交线的定义(如果两条直线只有一个公共点时,我们称这两条直线相交)作图即可;
(2)利用直尺先测量出OA长度,然后以点O为左端点,在射线ON上找出点C,连接AC,利用量角器度量角的度数即可得;
(3)连接AB与射线ON交于点P,即为所求,依据两点之间线段最短确定.
(1)
解:过点A作直线l如图所示:
(2)
解:利用直尺先测量出OA长度,然后以点O为左端点,在射线ON上找出点C,连接AC,如图所示;
经过测量:,
故答案为:60;
(3)
解:连接AB,与射线ON交于点P,即为所求,
依据两点之间线段最短确定,
故答案为:两点之间线段最短.
【点睛】
题目主要考查相交线的定义、作一条线段等于已知线段、度量角度、两点之间线段最短等知识点,理解题意,综合运用这些知识点是解题关键.
5、20°或160°
【解析】
【分析】
分两种情况画出图形,根据对顶角和垂线的定义分别求解.
【详解】
解:如图:
∵∠AOC=70°,
∴∠BOC=180°-70°=110°,
∵EO⊥CD,
∴∠BOE=∠BOC-∠COE=20°;
如图,
∵∠AOC=70°,
∴∠BOD=70°,
∵EO⊥CD,
∴∠BOE=∠BOD+∠DOE=160°;
综上:∠BOE的度数为20°或160°.
【点睛】
本题考查对顶角的性质,垂线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题,共24页。试卷主要包含了下列语句正确的个数是等内容,欢迎下载使用。
这是一份数学七年级下册第七章 相交线与平行线综合与测试课后测评,共24页。试卷主要包含了如图,直线a,如图所示,直线l1∥l2,点A等内容,欢迎下载使用。
这是一份2020-2021学年第七章 相交线与平行线综合与测试习题,共24页。试卷主要包含了下列说法中,错误的是等内容,欢迎下载使用。