冀教版第七章 相交线与平行线综合与测试精练
展开这是一份冀教版第七章 相交线与平行线综合与测试精练,共23页。试卷主要包含了有下列说法,直线,如图,不能推出a∥b的条件是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,测量运动员跳远成绩选取的应是图中( )
A.线段的长度 B.线段的长度
C.线段的长度 D.线段的长度
2、如图,点P是直线m外一点,A、B、C三点在直线m上,PB⊥AC于点B,那么点P到直线m的距离是线段( )的长度.
A.PA B.PB C.PC D.AB
3、如图,点,,,在同一条直线上,,,则的度数是( )
A. B. C. D.
4、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1 B.2 C.3 D.4
5、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
6、如图,于O,直线CD经过O,,则的度数是( )
A. B. C. D.
7、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )
A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°
8、如图,不能推出a∥b的条件是( )
A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°
9、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
10、如图,下列给定的条件中,不能判定的是( )
A. B. C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点P是直线l外一点,从点P向直线l引,,,几条线段,其中只有线段与直线l垂直.这几条线段中,______的长度最短.
2、在数学课上,王老师提出如下问题:
如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.
小李同学的作法如下:
①连接AB;
②过点A作AC⊥直线l于点C;
则折线段B﹣A﹣C为所求.
王老师说:小李同学的方案是正确的.
请回答:该方案最节省材料的依据是垂线段最短和______.
3、在同一平面内有2021条直线a1,a2,a3,…,a2021,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a5的位置关系是_____;a1与a2021的位置关系是_____.
4、平移的性质:①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小______.
②新图形中的每一个点,都是由原图形中的某一点移动后得到的,这两个点是对称点,连接各组对应点的线段______且______.
5、平行公理:经过直线外一点,有且只有_____条直线与已知直线平行.
平行公理的推论(平行线的传递性):
如果两条直线都与第三条直线平行,那么这两条直线互相_____.
几何语言表示:
∵a∥c , c∥b(已知)
∴_____∥_____(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
三、解答题(5小题,每小题10分,共计50分)
1、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.
(1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;
(2)当点E落在直线AC上时,直接写出∠BAD的度数;
(3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数.
2、探究:如图1直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上过点D作交AC于点E,过点E作交BC于点F.若,求∠DEF的度数.
请将下面的解答过程补充完整,并填空(理由或数学式)
解:,
_____________.(_____________)
,
∴_________.(_______________)
.(等量代换)
,
___________.
应用:如图2,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作交AC于点E,过点E作交BC于点F.若,求的度数并说明理由
3、对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N为∠M的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.
(1)若∠H=120°,则∠H的4系补周角的度数为 °;
(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE;
①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;
②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).
4、如图,在ABC中,DEAC,DFAB.
(1)判断∠A与∠EDF之间的大小关系,并说明理由.
(2)求∠A+∠B+∠C的度数.
5、如图,直线AB、CD相交于点O,OE平分∠BOD,且.求∠AOC和∠DOE的度数.
-参考答案-
一、单选题
1、D
【解析】
【分析】
直接利用过一点向直线作垂线,利用垂线段最短得出答案.
【详解】
解:如图所示:
过点P作PH⊥AB于点H,PH的长就是该运动员的跳远成绩,
故选:D.
【点睛】
本题主要考查了垂线段最短,正确理解垂线段最短的意义是解题关键.
2、B
【解析】
【分析】
根据点到直线的距离的定义解答即可.
【详解】
解:∵PB⊥AC于点B,
∴点P到直线m的距离是线段B的长度.
故选:B.
【点睛】
本题主要考查了点到直线的距离的定义,从直线外一点到这条直线的垂线段长度叫点到直线的距离.
3、B
【解析】
【分析】
根据推出,求出的度数即可求出答案.
【详解】
,
∴,
,
,
.
故选:.
【点睛】
此题考查了平行线的判定及性质,熟记平行线的判定定理:内错角相等两直线平行是解题的关键.
4、A
【解析】
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
5、D
【解析】
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
6、B
【解析】
【分析】
由OA⊥OB,得出∠AOB=90°,再根据∠AOD=35°,由余角的定义可得出∠BOD,再根据补角的定义可得出∠BOC的度数.
【详解】
解:∵OA⊥OB,
∴∠AOB=90°,
∵∠AOD=35°,
∴∠BOD=90°-35°=55°,
∴∠BOC=180-55°=125°,
故选B.
【点睛】
本题考查了垂线的定义,平角的定义,关键是利用90°和180°的数据进行计算.
7、D
【解析】
【分析】
由,证明,再利用角的和差求解 从而可得答案.
【详解】
解:如图,标注字母, ,
∴,
此时的航行方向为北偏东30°,
故选:D.
【点睛】
本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.
8、B
【解析】
【分析】
根据平行线的判定方法,逐项判断即可.
【详解】
解:、和是一对内错角,当时,可判断,故不符合题意;
、和是邻补角,当时,不能判定,故符合题意;
、和是一对同位角,当时,可判断,故不合题意;
、和是一对同旁内角,当时,可判断,故不合题意;
故选B.
【点睛】
本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
9、B
【解析】
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
10、A
【解析】
【分析】
根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
【详解】
解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
故选A.
【点睛】
本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
二、填空题
1、PC
【解析】
【分析】
根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答即可.
【详解】
解:直线外一点P与直线l上各点连接的所有线段中,最短的是PC,依据是垂线段最短,
故答案为:PC.
【点睛】
本题主要考查了垂线段最短的性质,熟记性质是解题的关键.
2、两点之间线段最短
【解析】
【分析】
根据两点之间线段最短即可得到答案.
【详解】
解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,
故答案为:两点之间线段最短.
【点睛】
本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键.
3、 平行 平行
【解析】
【分析】
根据平行线的性质和规律得到:4条直线的位置关系为一个循环.
【详解】
如图,a1⊥a2,a2∥a3,
∴a1⊥a3,
∵a3⊥a4,
∴a1∥a4,
∵a4∥a5,
∴a1∥a5,
…,
依此类推,a1⊥a6,a1⊥a7,a1∥a8,a1∥a9,连续4条直线的位置关系为一个循环.
∴2021=505×4+1,
∴a1∥a2021.
故答案是:平行;平行.
【点睛】
本题考查了平行线的性质,解题的关键是找到直线位置关系的规律.
4、 完全相同 平行(或共线) 相等
【解析】
略
5、 一 平行 a b
【解析】
略
三、解答题
1、(1);(2);(3)的值为:或.
【解析】
【分析】
(1)先求解 再利用角的和差关系可得答案;
(2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;
(3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.
【详解】
解:(1) ∠BAD=18°,∠EAD=∠BAD,
(2)当落在的下方时,如图,
当落在的上方时,如图,
而
(3)当落在的内部时,如图,
∠CAE:∠BAD=7:4,
当落在的外部时,如图,
∠CAE:∠BAD=7:4,
设则
解得:
综上:的值为:或.
【点睛】
本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
2、探究:∠EFC;两直线平行,内错角相等;∠EFC;两直线平行,同位角相等;50°;应用:,见解析.
【解析】
【分析】
探究:根据平行线的性质填写证明过程即可;
应用:根据探究的方法利用平行线的性质求角度即可.
【详解】
探究:,
.(_两直线平行,内错角相等)
,
∴.(两直线平行,同位角相等_)
.(等量代换)
,
.
应用:,
∴∠ABC=∠ADE=65°.(两直线平行,同位角相等)
∵EF∥AB,
∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)
∴∠DEF=180°−65°=115°.
【点睛】
本题考查了平行线的性质求角度,掌握平行线的性质是解题的关键.
3、 (1)60
(2)①∠B=75°,②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.
【解析】
【分析】
(1)设∠H的4系补周角的度数为x°,根据新定义列出方程求解便可;
(2)①过E作EF∥AB,得∠B+∠D=∠BED,再由已知∠D=60°,∠B是∠E的3系补周角,列出∠B的方程,求得∠B便可;
②根据k系补周角的定义先确定P点的位置,再结合∠ABF=n∠ABE,∠CDF=n∠CDE求解k与n的关系即可求解.
(1)
解:设∠H的4系补周角的度数为x°,根据新定义得,120+4x=360,
解得,x=60,
∠H的4系补周角的度数为60°,
故答案为:60;
(2)
解:①过E作EF∥AB,如图1,
∴∠B=∠BEF,
∵AB∥CD,
∴EF∥CD,∠D=60°,
∴∠D=∠DEF=60°,
∵∠B+60°=∠BEF+∠DEF,
即∠B+60°=∠BED,
∵∠B是∠BED的3系补周角,
∴∠BED=360°-3∠B,
∴∠B+60°=360°-3∠B,
∴∠B=75°;
②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,理解题意是解题的关键.
4、(1)两角相等,见解析;(2)180°
【解析】
【分析】
(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
【详解】
(1)两角相等,理由如下:
∵DE∥AC,
∴∠A=∠BED(两直线平行,同位角相等).
∵DF∥AB,
∴∠EDF=∠BED(两直线平行,内错角相等),
∴∠A=∠EDF(等量代换).
(2)∵DE∥AC,
∴∠C=∠EDB(两直线平行,同位角相等).
∵DF∥AB,
∴∠B=∠FDC(两直线平行,同位角相等).
∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°(等量代换).
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
5、50°,25°.
【解析】
【分析】
根据邻补角的性质,可得∠AOD+∠BOD=180°,即,代入可得∠BOD,根据对顶角的性质,可得∠∠AOC的度数,根据角平分线的性质,可得∠DOE的数.
【详解】
解:由邻补角的性质,得∠AOD+∠BOD=180°,即
∵,
∴.
∴,
∴∠AOC=∠BOD=50°,
∵OE平分∠BOD,得
∠DOE=∠DOB=25°.
【点睛】
本题考查了角平分线的定义,对顶角、邻补角的性质,解题关键是熟记相关性质,根据角之间的关系建立方程求解.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共24页。试卷主要包含了下列命题中,为真命题的是,下列说法中,错误的是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
这是一份初中冀教版第七章 相交线与平行线综合与测试达标测试,共23页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课时训练,共21页。试卷主要包含了如图,直线b,下列说法中不正确的是,如图,,交于点,,,则的度数是,下列各图中,和是对顶角的是等内容,欢迎下载使用。