初中数学冀教版七年级下册第七章 相交线与平行线综合与测试一课一练
展开
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试一课一练,共23页。试卷主要包含了下列语句正确的个数是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,点在延长线上,下列条件中不能判定的是( )A. B. C. D.2、如图,一定能推出的条件是( )A. B. C. D.3、如图,下列条件中,不能判断∥的是( )A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠44、如图,点,,,在同一条直线上,,,则的度数是( )A. B. C. D.5、如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )A.15° B.20° C.25° D.30°6、如图,如果将图中任意一条线段沿方格线的水平或竖直方向平移1格称为“1步”,那么通过平移要使图中的3条线段首尾相接组成一个三角形,最少需要( )A.4步 B.5步 C.6步 D.7步7、如果存在一条直线将一个图形分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )A. B.C. D.8、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )A.等于4cm B.小于4cmC.大于4cm D.不大于4cm9、下列语句正确的个数是( )(1)经过平面内一点有且只有一条直线与已知直线垂直;(2)经过平面内一点有且只有一条直线与已知直线平行;(3)在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(4)在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.A.1个 B.2个 C.3个 D.4个10、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )A.2cm B.小于2cm C.不大于2cm D.4cm第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、在同一平面内,过一点有且只有______直线与已知直线垂直.注意:①“过一点”中的点,可以在______,也可以在______;②“有且只有”中,“有”指存在,“只有”指唯一性.2、如图,点在直线上,射线平分.若,则等于___.3、平移的性质:①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小______.②新图形中的每一个点,都是由原图形中的某一点移动后得到的,这两个点是对称点,连接各组对应点的线段______且______.4、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.5、按要求完成下列证明:如图,点,,分别是三角形的边,,上的点,,.求证:.证明:, ., . .三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB、CD相交于点O,若,OA平分∠COE,求∠DOE的度数.2、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为 °,∠CON的度数为 °;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为 °;(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为 °;∠DOC与∠BON的数量关系是∠DOC ∠BON(填“>”、“=”或“<”);(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为 °;∠AOM﹣∠CON的度数为 °3、完成下面推理填空:已知:如图,△ABC中,点D是AB上一点,点E是AC上一点,点F是BC延长线上一点,连接CD,DE,EF,若∠1=∠F,CD∥EF,求证:∠EDB+∠ABC=180°.证明:∵CD∥EF(已知),∴∠F=∠BCD( ),∵∠1=∠F(已知),∴ = ( ),∴ ∥ ( ),∴∠EDB+∠ABC=180°( ).4、如图,在6×6的正方形网格中,每个小正方形的边长是1,点M、N、P、Q均为格点(格点是指每个小正方形的顶点),线段MN经过点P.(1)过点P画线段AB,使得线段AB满足以下两个条件:①AB⊥MN;②;(2)过点Q画MN的平行线CD,CD与AB相交于点E;(3)若格点F使得△PFM的面积等于4,则这样的点F共有 个.5、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.(1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;(2)当点E落在直线AC上时,直接写出∠BAD的度数;(3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数. -参考答案-一、单选题1、A【解析】【分析】根据平行线的判定方法直接判定即可.【详解】解:选项B中,,(内错角相等,两直线平行),所以正确;选项C中,,(内错角相等,两直线平行),所以正确;选项D中,,(同旁内角互补,两直线平行),所以正确;而选项A中,与是直线、被所截形成的内错角,因为,所以应是,故A错误.故选:A.【点睛】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2、D【解析】【分析】平行线的判定方法有:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行;根据平行线的判定方法逐一判定即可.【详解】解:A.和是直线和被直线所截所成的内错角,不能推出,故本选项不符合题意;B.和是直线和被直线所截所成的内错角,不能推出,故本选项不符合题意;C.和是直线和被直线所截所成的内错角,但不能判定,不能判定,和是直线和被直线所截所成的同位角,但不能判定,不能判定,不能推出,故本选项不符合题意;D.和是直线和被直线所截所成的同位角,能推出,故本选项符合题意;故选:D.【点睛】本题主要考查了平行线的判定,熟记同位角相等,两直线平行是解决问题的关键.3、D【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:、,内错角相等,,故本选项错误,不符合题意;、,同位角相等,,故本选项错误,不符合题意;、,同旁内角互补,,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.4、B【解析】【分析】根据推出,求出的度数即可求出答案.【详解】,∴,,,.故选:.【点睛】此题考查了平行线的判定及性质,熟记平行线的判定定理:内错角相等两直线平行是解题的关键.5、B【解析】【分析】若使直线b与直线c平行,则∠1=180°-∠2=140°,还差20°,故旋转20°.【详解】解: ∵∠1=120°,∴∠3=180°-120°=60°.∵∠2=40°,∴要使b∥c,则∠2=∠3,∴直线b绕点A逆时针旋转60°-40°=20°.故选B.【点睛】本题考查直线与平行线相交的性质,掌握这些性质是本题关键.6、B【解析】【分析】根据图示和平移的性质,注意正确的计数,查清方格的个数,从而求出步数.【详解】解:由图形知,中间的线段向左平移1个单位,上边的直线向右平移2个单位,最下边的直线向上平移2个单位,只有这样才能使构造的三角形平移的次数最少,其它平移方法都多于5步.∴通过平移使图中的3条线段首尾相接组成一个三角形,最少需要5步.故选:B.【点睛】本题考查了图形的平移变换,注意平移不改变图形的形状和大小且平移前后图形对应点之间的连线应该互相平行,另外使平移后成为三角形.7、D【解析】【分析】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D.【详解】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.则有:AF=FD,BE=EC,AB=EF=CD,∴四边形ABEF向右平移可以与四边形EFCD重合,∴平行四边形ABCD是平移重合图形.同理可证,正方形,长方形,也是平移重合图形,故选项A、B、C不符合题意,而找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D符合题意;故选D.【点睛】本题考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题.8、D【解析】【分析】根据平行线间的距离的定义解答即可.【详解】解:分两种情况:如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm直线a与直线b之间的距离不大于4cm.故选D.【点睛】本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.9、C【解析】【分析】由题意直接根据平行公理及平行线的判定定理进行判断即可.【详解】解:经过平面内一点有且只有一条直线与已知直线垂直,故(1)正确;经过直线外一点有且只有一条直线与已知直线平行,故(2)不正确;平面内,平行具有传递性,故(3)正确;同一平面内,如果两条直线都与第三条直线垂直,则同位角(内错角)相等,这两条直线互相平行,故(4)正确,∴正确的有(1)、(3)、(4),故选:C.【点睛】本题考查平行公理及平行线的判定定理,熟练掌握理解平行线公理及判定定理是解题的关键.10、C【解析】【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,∴点到直线的距离不大于,故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.二、填空题1、 一条 已知直线上 已知直线外【解析】略2、【解析】【分析】首先根据角平分线定义可得∠BOD=2∠BOC,再根据邻补角的性质可得∠AOD的度数.【详解】∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵,∴,∴∠AOD=180°,故答案为:.【点睛】此题主要考查了角平分线定义和邻补角的定义,关键是掌握角平分线把角分成相等的两部分.需要注意角度度分秒的计算.3、 完全相同 平行(或共线) 相等【解析】略4、18°##18度【解析】【分析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.【详解】解:∵∠COE是直角,∴∠COE=90°,∵∠COF=36°,∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,∵OF平分∠AOE,∴∠AOF=∠EOF=54°,∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,∴∠BOD=∠AOC=18°.故答案为:18°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.5、,两直线平行,内错角相等;,等量代换;同位角相等,两直线平行【解析】【分析】由题意知由两直线平行,内错角相等可得,由,可知.【详解】解:证明: 两直线平行,内错角相等)(已知)(等量代换)(同位角相等,两直线平行)故答案为:,两直线平行,内错角相等;,等量代换;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定.解题的关键在于用角的数量关系判断两直线的位置关系.三、解答题1、100°【解析】【分析】根据对顶角的性质,可得∠AOC与∠DOB的关系,根据角平分线的性质,可得∠COE与∠AOC的关系,根据邻补角的性质,可得答案.【详解】解:由对顶角相等得∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠COE=2∠AOC=80°,由邻补角的性质得∠DOE=180°-∠COE=180°-80°=100°.【点睛】本题考查了对顶角、邻补角,对顶角相等,邻补角互补,熟练掌握对顶角的性质和角平分线的定义是解答本题的关键.2、(1)120;150;(2)30°;(3)30,=;(4)150;30.【解析】【分析】(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.【详解】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.故答案为120;150;(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,由(1)得∠BOC=120°,∴∠BOM=∠BOC=60°,又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为30°;(3)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.故答案为30,=;(4)∵MN⊥AB,∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为150;30.【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.3、两直线平行,同位角相等;∠1,∠BCD,等量代换;DE,BC,内错角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】根据平行线的判定与性质进行填空即可的得出答案.【详解】证明:∵CD∥EF(已知),∴∠F=∠DCD(两直线平行,同位角相等),∵∠1=∠F(已知),∴∠1=∠BCD(等量代换),∴DE∥BC(内错角相等,两直线平行),∴∠EDB+∠ABC=180°(两直线平行,同旁内角互补).故答案为:两直线平行,同位角相等;∠1,∠BCD,等量代换;DE,BC,内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查平行线的判定与性质,熟知平行线的判定与性质是解答的关键.4、 (1)见解析(2)见解析(3)6【解析】【分析】(1)根据网格作图即可;(2)根据网格作图即可;(3)根据网格作图即可.(1)解:作图如下:(2)解:作图见(1)(3)如图:故符合题意的点F有6个.故答案为:6【点睛】本题考查了直线、射线、线段及平行公理的应用,解题的关键是准确作出图形.5、(1);(2);(3)的值为:或.【解析】【分析】(1)先求解 再利用角的和差关系可得答案;(2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;(3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.【详解】解:(1) ∠BAD=18°,∠EAD=∠BAD, (2)当落在的下方时,如图, 当落在的上方时,如图, 而 (3)当落在的内部时,如图, ∠CAE:∠BAD=7:4, 当落在的外部时,如图, ∠CAE:∠BAD=7:4,设则 解得: 综上:的值为:或.【点睛】本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课时练习,共22页。试卷主要包含了下列命题中是假命题的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题,共23页。试卷主要包含了如图,直线AB∥CD,直线AB,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试习题,共23页。试卷主要包含了以下命题是假命题的是,下列说法正确的有等内容,欢迎下载使用。