初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题
展开
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题,共24页。试卷主要包含了下列语句正确的个数是等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,E在线段BA的延长线上,∠EAD=∠D,∠B=∠D,EFHC,连FH交AD于G,∠FGA的余角比∠DGH大16°,K为线段BC上一点,连CG,使∠CKG=∠CGK,在∠AGK内部有射线GM,GM平分∠FGC,则下列结论:①ADBC;②GK平分∠AGC;③∠DGH=37°;④∠MGK的角度为定值且定值为16°,其中正确结论的个数有( )A.4个 B.3个 C.2个 D.1个2、下列A、B、C、D四幅图案中,能通过平移图案得到的是( )A. B. C. D.3、如图,∠1=∠2,∠3=25°,则∠4等于( )A.165° B.155° C.145° D.135°4、如图,下列条件能判断直线l1//l2的有( )①;②;③;④;⑤A.1个 B.2个 C.3个 D.4个5、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )A.等于4cm B.小于4cmC.大于4cm D.不大于4cm6、如图,点O在直线BD上,已知,,则的度数为( ).A.20° B.70° C.80° D.90°7、在下列汽车标志的图案中,能用图形的平移来分析其形成过程的是( )A. B.C. D.8、下列语句正确的个数是( )(1)经过平面内一点有且只有一条直线与已知直线垂直;(2)经过平面内一点有且只有一条直线与已知直线平行;(3)在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(4)在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.A.1个 B.2个 C.3个 D.4个9、如图,点E在的延长线上,能判定的是( )A. B.C. D.10、下列说法中,错误的是( )A.两点之间线段最短B.若AC=BC,则点C是线段AB的中点C.过直线外一点有且只有一条直线与已知直线平行D.平面内过直线外一点有且只有一条直线与已知直线垂直第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要______米.2、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.证明:∵(已知),∴(垂直的定义).∴________,∵(已知),∴________(依据1:________),∴(依据2:________).3、如果两个角有一个公共顶点,并且其中一个角的两边是另一个角的两边的___________,那么这两个角互为对顶角.图中∠1的对顶角是______.4、如图,已知点B在线段CF上,AB∥CD,AD∥BC,DF交AB于点E,联结AF、CE,S△BCE:S△AEF的比值为___.5、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图1,直线AC∥BD,直线AC、BD及直线AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六个部分.点P是其中的一个动点,连接PA、PB,观察∠APB、∠PAC、∠PBD三个角.规定:直线AC、BD、AB上的各点不属于(1)、(2)、(3)、(4)、(5)、(6)六个部分中的任何一个部分.(1)当动点P落在第(1)部分时,可得:∠APB=∠PAC+∠PBD,请阅读下面的解答过程,并在相应的括号内填注理由过点P作EF∥AC,如图2因为AC∥BD(已知),EF∥AC(所作),所以EF∥BD______.所以∠BPE=∠PBD______.同理∠APE=∠PAC.因此∠APE+∠BPE=∠PAC+∠PBD______,即∠APB=∠PAC+∠PBD.(2)当动点P落在第(2)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出∠APB、∠PAC、∠PBD之间满足的关系式,不必说明理由.(3)当动点P在第(3)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.(4)当动点P在第(4)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.2、如图,已知ABCD,BE平分∠ABC,∠CDE = 150°,求∠C的度数.3、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A= ( ).∴AB∥ ( ).又∵∠1=∠2(已知),∴AB∥CD ( ).∴EF∥ ( ).∴∠FDG=∠EFD ( ).4、如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥OD.(1)若∠AOC=60°,求∠EOF的度数.(2)画OE的反向延长线OG,OG是∠AOC的平分线吗?请说明理由.5、如图,在方格纸中,每个小正方形的边长为一个长度单位,点A、B、C都在格点上.(1)画出线段BC;(2)将线段BC向上平移三个单位,得到线段DE,在图中画出线段DE;(3)三角形ADE的面积= . -参考答案-一、单选题1、B【解析】【分析】根据平行线的判定定理得到AD∥BC,故①正确;由平行线的性质得到∠AGK=∠CKG,等量代换得到∠AGK=∠CGK,求得GK平分∠AGC;故②正确;根据题意列方程得到∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,得到∠AGK=α+β,根据角平分线的定义即可得到结论.【详解】解:∵∠EAD=∠D,∠B=∠D,∴∠EAD=∠B,∴AD∥BC,故①正确;∴∠AGK=∠CKG,∵∠CKG=∠CGK,∴∠AGK=∠CGK,∴GK平分∠AGC;故②正确;∵∠FGA的余角比∠DGH大16°,∴90°-∠FGA-∠DGH=16°,∵∠FGA=∠DGH,∴90°-2∠FGA=16°,∴∠FGA=∠DGH=37°,故③正确;设∠AGM=α,∠MGK=β,∴∠AGK=α+β,∵GK平分∠AGC,∴∠CGK=∠AGK=α+β,∵GM平分∠FGC,∴∠FGM=∠CGM,∴∠FGA+∠AGM=∠MGK+∠CGK,∴37°+α=β+α+β,∴β=18.5°,∴∠MGK=18.5°,故④错误,故选:B.【点睛】本题考查了平行线的判定和性质,角平分线的定义,对顶角性质,一元一次方程,正确的识别图形是解题的关键.2、D【解析】【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.【详解】解:由平移的性质可知,不改变图形的形状、大小和方向,只有D选项符合要求,故选:D.【点睛】本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3、B【解析】【分析】设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.【详解】解:设∠4的补角为,如下图所示:∠1=∠2,,,.故选:B.【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.4、D【解析】【分析】根据平行线的判定定理进行依次判断即可.【详解】①∵∠1,∠3互为内错角,∠1=∠3,∴; ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;③∠4,∠5互为同位角,∠4=∠5,∴; ④∠2,∠3没有位置关系,故不能证明 ,⑤,,∴∠1=∠3,∴,故选D.【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.5、D【解析】【分析】根据平行线间的距离的定义解答即可.【详解】解:分两种情况:如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm直线a与直线b之间的距离不大于4cm.故选D.【点睛】本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.6、B【解析】【分析】直接利用垂直的定义结合互余得出答案.【详解】解:∵点O在直线DB上, OC⊥OA, ∴∠AOC=90°,∵∠1=20°,∴∠BOC=90°−20°=70°,故选:B.【点睛】此题主要考查了垂线以及互余,正确把握相关定义是解题关键.7、C【解析】【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【详解】解:A.不是由“基本图案”经过平移得到,故此选项不合题意;B.不是由“基本图案”经过平移得到,故此选项不合题意;C.是由“基本图案”经过平移得到,故此选项符合题意;D.不是由“基本图案”经过平移得到,故此选项不合题意;故选:C.【点睛】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.8、C【解析】【分析】由题意直接根据平行公理及平行线的判定定理进行判断即可.【详解】解:经过平面内一点有且只有一条直线与已知直线垂直,故(1)正确;经过直线外一点有且只有一条直线与已知直线平行,故(2)不正确;平面内,平行具有传递性,故(3)正确;同一平面内,如果两条直线都与第三条直线垂直,则同位角(内错角)相等,这两条直线互相平行,故(4)正确,∴正确的有(1)、(3)、(4),故选:C.【点睛】本题考查平行公理及平行线的判定定理,熟练掌握理解平行线公理及判定定理是解题的关键.9、B【解析】【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.【详解】A. ,,故该选项不符合题意;B. ,,故该选项符合题意;C. ,,故该选项不符合题意; D. ,,故该选项不符合题意;故选B【点睛】本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.10、B【解析】【分析】根据线段公理可判断A,根据点C与线段AB的位置关系可判断B,根据平行公理可判断C,根据垂线公理可判断D即可.【详解】A. 两点之间线段最短,正确,故选项A不合题意;B. 若AC=BC,点C在线段AB外和线段AB上两种情况,当点C在线段AB上时,则点C是线段AB的中点,当点C不在线段AB上,则点C不是线段AB中点,不正确,故选项B符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,正确,故选项C不合题意;D. 平面内过直线外一点有且只有一条直线与已知直线垂直,正确,故选项D不合题意.故选B.【点睛】本题考查基本事实即公理,和线段的中点,掌握基本事实即公理,和线段的中点是解题关键.二、填空题1、15【解析】【分析】根据平移的性质可得,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,计算即可得出答案.【详解】解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要 12+3=15(米).故答案为:15.【点睛】本题主要考查了平移现象,熟练应用平移的性质进行求解是解决本题的关键.2、 同角的余角相等 内错角相等,两直线平行【解析】【分析】根据垂直的定义及平行线的判定定理即可填空.【详解】∵(已知),∴(垂直的定义).∴,∵(已知),∴(同角的余角相等),∴(内错角相等,两直线平行).故答案为:;;同角的余角相等;内错角相等,两直线平行.【点睛】此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.3、 反向延长线 ∠1【解析】略4、1【解析】【分析】连接BD,利用平行线间距离相等得到同底等高的三角形面积相等即可解答.【详解】解:连接BD,如下图所示:∵BC∥AD,∴S△AFD= S△ABD,∴S△AFD- S△AED= S△ABD- S△AED,即S△AEF= S△BED,∵AB∥CD,∴S△BED=S△BEC,∴S△AEF=S△BEC,∴S△BCE:S△AEF=1.故答案为:1.【点睛】本题以平行为背景考查了同底等高的三角形面积相等,找到要求的三角形有关的同(等)底或同(等)高是解题的关键.5、50°##50度【解析】【分析】由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.【详解】解:∵AB∥CD∥EF,∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,∴∠ECD=180°-∠CEF=75°,∴∠BCE=∠BCD-∠ECD=50°,故答案为:50°.【点睛】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.三、解答题1、 (1)平行于同一直线的两直线平行;两直线平行,内错角相等;等式性质;(2)∠APB+∠PAC+∠PBD=180°(3)∠PAC=∠APB+∠PBD(4)∠PAC+∠APB=∠PBD【解析】【分析】(1)根据平行公理、平行线的性质、等式的性质分别解答;(2)过点P作EF∥AC,证明EF∥BD,推出∠BPF+∠PBD=180°,同理∠APF+∠PAC=180°.由此得到结论∠APB+∠PAC+∠PBD=360°;(3)过点P作EF∥AC,如图4,根据平行线的性质可得出∠PAC=∠APB+∠PBD;(4)过点P作EF∥AC,如图5,根据平行线的性质可得出∠PAC+∠APB=∠PBD.(1)解:过点P作EF∥AC,如图2因为AC∥BD(已知),EF∥AC(所作),所以EF∥BD平行于同一直线的两直线平行.所以∠BPE=∠PBD两直线平行,内错角相等.同理∠APE=∠PAC.因此∠APE+∠BPE=∠PAC+∠PBD等式的性质,即∠APB=∠PAC+∠PBD.故答案为:平行于同一直线的两直线平行;两直线平行,内错角相等;等式性质;(2)解:过点P作EF∥AC,如图(3),因为AC∥BD,EF∥AC,所以EF∥BD.所以∠BPF+∠PBD=180°.同理∠APF+∠PAC=180°.因此∠APF+∠BPF+∠PAC+∠PBD=360°,即∠APB+∠PAC+∠PBD=360°.(3)解:过点P作EF ∥ AC,如图4,∵AC∥BD,EF∥AC,∴EF∥BD.∴∠MPF=∠PBD.∠APF+∠PAC=180°.∵∠APF+∠MPF+∠APB =180°,∴∠PAC=∠APB+∠PBD;(4)解:过点P作EF ∥ AC,如图5,∵AC∥BD,EF∥AC,∴EF∥BD.∴∠MPF=∠PBD.∠APN=∠PAC.∵∠MPF=∠NPB =∠APB+∠APN,∴∠PAC+∠APB=∠PBD.【点睛】本题考查了平行公理,平行线的性质以及数形结合思想的应用,是基础知识比较简单.2、∠C的度数为120°【解析】【分析】首先由∠CDE=150°和平角的概念得到∠CDB=30°;然后根据两直线平行,内错角相等得到∠ABD=∠CDB=30°,进而根据角平分线的定义求出∠ABC=60°,最后根据两直线平行,同旁内角互补即可求出∠C的度数.【详解】解:∵∠CDE=150°, ∴∠CDB=180°-∠CDE=30°, 又∵ABCD, ∴∠ABD=∠CDB=30°,∵BE平分∠ABC, ∴∠ABC=2∠ABD=60°, ∵ABCD, ∴∠C=180°-∠ABC=120°.【点睛】本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键.3、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等【解析】【分析】利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论【详解】解:∵∠A=120°,∠FEC=120°(已知),∴∠A=∠FEC(等量代换),∴AB∥EF(同位角相等,两直线平行),又∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),∴EF∥CD(平行于同一条直线的两直线互相平行),∴∠FDG=∠EFD(两直线平行,内错角相等),故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.4、 (1)60°;(2)OG是∠AOC的平分线,理由见解析.【解析】【分析】(1)依据对顶角相等得到∠BOD=60°;根据OE平分∠BOD,即可得出∠DOE=∠BOD=30°,依据OF⊥CD,可得∠EOF=90°−30°=60°;(2)根据角平分线的定义得到∠BOE=∠DOE,根据对顶角的性质得到∠AOG=∠COG,于是得到结论.(1)解:∵直线AB、CD相交于点O,∴∠BOD=∠AOC=60°,∵OE平分∠BOD,∴∠DOE=∠BOD=30°,∵OF⊥CD,∴∠DOF=90°,∴∠EOF=∠DOF -∠DOE=90°−30°=60°;(2)解:如图,画出OE的反向延长线OG如图所示,OG平分∠AOC,理由:∵射线OE平分∠BOD,∴∠BOE=∠DOE,∵∠BOE=∠AOG,∠DOE=∠COG,∴∠AOG=∠COG,∴OG平分∠AOC.【点睛】本题考查了对顶角的性质,角平分线的定义,熟记对顶角的性质和角平分线的定义是解题的关键.5、(1)见解析;(2)见解析;(3)8【解析】【分析】(1)连接B、C两点即可;(2)根据平移的定义,得出对应点的位置,连接即可;(3)根据三角形的面积公式计算即可.【详解】解:(1)线段BC如图所示,(2)线段DE如图所示,(3)三角形ADE的面积=【点睛】本题考查作图-平移变换.解题的关键是熟练掌握平移变换的性质.
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试当堂达标检测题,共19页。试卷主要包含了如图,直线AB∥CD,直线AB,下列说法正确的有,生活中常见的探照灯等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共23页。试卷主要包含了下列命题是真命题的是,下列命题中是假命题的是,下列说法正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第七章 相交线与平行线综合与测试习题,共24页。试卷主要包含了下列说法中,错误的是等内容,欢迎下载使用。