![2022年最新精品解析冀教版七年级数学下册第七章相交线与平行线课时练习试题(含详细解析)01](http://img-preview.51jiaoxi.com/2/3/12717830/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第七章相交线与平行线课时练习试题(含详细解析)02](http://img-preview.51jiaoxi.com/2/3/12717830/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第七章相交线与平行线课时练习试题(含详细解析)03](http://img-preview.51jiaoxi.com/2/3/12717830/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后练习题
展开冀教版七年级数学下册第七章相交线与平行线课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,直线被所截,下列说法,正确的有( )
①与是同旁内角;
②与是内错角;
③与是同位角;
④与是内错角.
A.①③④ B.③④ C.①②④ D.①②③④
2、如图,,交于点,,,则的度数是( )
A.34° B.66° C.56° D.46°
3、如图,不能推出a∥b的条件是( )
A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°
4、下列说法中正确的有( )
(1)两条直线被第三条直线所截,同位角相等;
(2)若,则,,互余;
(3)相等的两个角是对顶角;
(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.
A.个 B.个 C.个 D.个
5、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )
A.等于4cm B.小于4cm
C.大于4cm D.不大于4cm
6、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
7、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )
A.3.5 B.4 C.5 D.5.5
8、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=( )
A.62° B.58° C.52° D.48°
9、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )
A.39° B.41° C.49° D.51°
10、如图,∠1=∠2,则下列结论正确的是( )
A.AD∥BC B.AB∥CD
C.AD∥EF D.EF∥BC
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、同一平面内,两条直线相交有__________个交点,两条直线相交的特殊位置关系是__________.
2、垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的______,它们的交点叫做______.
3、如图,在公园绿化时,需要把管道l中的水引到A,B两处.工人师傅设计了一种又快又节省材料的方案如下:
画法:如图,
(1)连接AB;
(2)过点A画线段直线l于点C,所以线段AB和线段AC即为所求.
请回答:工人师傅的画图依据是______.
4、如图,A、B、C为直线l上的点,D为直线l外一点,若,则的度数为______.
5、太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关.如图,从点照射到抛物线上的光线,等反射以后沿着与平行的方向射出.图中如果,,则________,________.
三、解答题(5小题,每小题10分,共计50分)
1、经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.
2、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
证明:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD( )
∵MN∥AB,
∴∠A=( )( )
∵MN∥CD,
∴∠D= ( )
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
【应用拓展】如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.
3、如图,在△ABC中,∠BAC>90°,根据下列要求作图并回答问题.
(1)过点C画直线lAB;
(2)过点A分别画直线BC和直线l的垂线段,垂足分别为点D、E,AE交BC千点F;
(3)线段 的长度是点A到BC的距离.(不要求写画法,只需写出结论即可)
4、如图,已知AB∥CD,BE平分∠ABC,DB平分∠CDF,且∠ABC+∠CDF=180°.
求证:BE⊥DB.
证明:∵AB∥CD
∴∠ABC=∠BCD( )
∵∠ABC+∠CDF=180°( )
∴∠BCD+∠CDF=180°( )
∴BC∥DF( )
于是∠DBC=∠BDF( )
∵BE平分∠ABC,DB平分∠CDF
∴∠EBC=∠ABC,∠BDF= ( )
∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF)
即∠EBD=
∴BE⊥DB( )
5、如图,DH交BF于点E,CH交BF于点G,,,.试判断CH和DF的位置关系并说明理由.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据同位角、内错角、同旁内角的定义可直接得到答案.
【详解】
解:①与是同旁内角,说法正确;
②与是内错角,说法正确;
③与是同位角,说法正确;
④与是内错角,说法正确,
故选:D.
【点睛】
此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
2、C
【解析】
【分析】
由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C
【点睛】
本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.
3、B
【解析】
【分析】
根据平行线的判定方法,逐项判断即可.
【详解】
解:、和是一对内错角,当时,可判断,故不符合题意;
、和是邻补角,当时,不能判定,故符合题意;
、和是一对同位角,当时,可判断,故不合题意;
、和是一对同旁内角,当时,可判断,故不合题意;
故选B.
【点睛】
本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
4、A
【解析】
【分析】
两条平行直线被第三条直线所截时,同位角相等;两个和为的角互为余角;两相交线的对顶角相等;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离.
【详解】
(1)两条直线被第三条直线所截,同位角不一定相等,故错误;
(2)两个角的和为,这两个角互为余角,故错误;
(3)相等的两个角不一定是对顶角,对顶角一定相等,故错误;
(4)从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,故错误;
故选:A.
【点睛】
本题考查了同位角,余角,对顶角以及点到直线的距离.解题的关键在于正确理解各名词的定义.
5、D
【解析】
【分析】
根据平行线间的距离的定义解答即可.
【详解】
解:分两种情况:
如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,
若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm
直线a与直线b之间的距离不大于4cm.
故选D.
【点睛】
本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.
6、D
【解析】
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
7、D
【解析】
【分析】
直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.
【详解】
∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.
∵AB=3,
∴AC=5,
∴3≤AP≤5,
故AP不可能是5.5,
故选:D.
【点睛】
本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.
8、A
【解析】
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,
∴,
∴,
故选:A.
【点睛】
本题考查平行线的性质,掌握平行线的性质是解题的关键.
9、C
【解析】
【分析】
由题意直接根据平行线的性质进行分析计算即可得出答案.
【详解】
解:如图,
∵AB∥CD,∠C=131°,
∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
∵AE∥CF,
∴∠A=∠C=49°(两直线平行,同位角相等).
故选:C.
【点睛】
本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
10、C
【解析】
略
二、填空题
1、 1 垂直
【解析】
略
2、 垂线 垂足
【解析】
略
3、两点之间,线段最短;垂线段最短
【解析】
【分析】
根据两点之间线段最短以及垂线段最短即可判断.
【详解】
解:由于两点之间距离最短,故连接AB,
由于垂线段最短可知,过点A作AC⊥直线l于点C,此时AC最短,
故答案为:两点之间,线段最短;垂线段最短.
【点睛】
本题考查作图−应用与设计作图,解题的关键是正确两点之间线段最短以及垂线段最短,本题属于基础题型.
4、60°##60度
【解析】
【分析】
由邻补角的定义,结合,可得答案.
【详解】
解:
故答案为:
【点睛】
本题考查的是邻补角的定义,掌握“互为邻补角的两个角的和为”是解本题的关键.
5、 45°##45度 112°##45度
【解析】
【分析】
由平行线的性质即可得出,.
【详解】
由题意知AB//PQ//CD
∴
∴
故答案为:45°,112°
【点睛】
本题考查了平行线的性质,两直线平行,同位角相等、内错角相等、同旁内角互补.
三、解答题
1、见解析
【解析】
【详解】
2、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
【解析】
【分析】
基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
【详解】
解:基础问题:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(平行于同一条直线的两条直线平行),
∵MN∥AB,
∴∠A=∠AGM(两直线平行,内错角相等),
∵MN∥CD,
∴∠D=∠DGM(两直线平行,内错角相等),
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
类比探究:如图所示,过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD,
∵MN∥AB,
∴∠A=∠AGM,
∵MN∥CD,
∴∠D=∠DGM,
∴∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
又∵AB∥CD,
∴MN∥CD,PQ∥CD
∵MN∥AB,PQ∥AB,
∴∠BAG=∠AGM,∠BAH=∠AHP,
∵MN∥CD,PQ∥CD,
∴∠CDG=∠DGM,∠CDH=∠DHP,
∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
∴∠GDH=44°,∠DHP=22°,
∴∠CDG=66°,∠AHP=54°,
∴∠DGM=66°,∠BAH=54°,
∵AH平分∠BAG,
∴∠BAG=2∠BAH=108°,
∴∠AGM=108°,
∴∠AGD=∠AGM-∠DGM=42°.
【点睛】
本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
3、 (1)见解析
(2)见解析
(3)AD
【解析】
【分析】
(1)根据几何语言画出对应的几何图形;
(2)根据几何语言画出对应的几何图形;
(3)根据点到直线的距离的定义求解.
(1)
如图,直线l为所作;
(2)
如图,AD、AE为所作;
(3)
线段AD的长度为点A到BC的距离.
故答案为:AD.
【点睛】
此题考查了点到直线的距离,用直尺、三角板画平行线,作图—复杂作图.正确掌握各作图方法是解题的关键。
4、两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义.
【解析】
【分析】
结合条件与图形,读懂每一步推理及推理的依据,即可完成解答.
【详解】
∵AB∥CD,
∴∠ABC=∠BCD(两直线平行,内错角相等),
∵∠ABC+∠CDF=180°(已知),
∴∠BCD+∠CDF=180°(等量代换),
∴BC∥DF(同旁内角互补,两直线平行),
于是∠DBC=∠BDF(两直线平行,内错角相等),
∵BE平分∠ABC,DB平分∠CDF,
∴∠EBC=∠ABC,∠BDF=∠CDF(角平分线定义),
∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF),
即∠EBD=90°,
∴BE⊥DB(垂直的定义).
故答案分别为;两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义
【点睛】
本题考查了平行线的判定与性质,角平分线的定义及垂直的定义等知识,根据题意读懂每步推理,弄清每步推理的依据是完成本题的关键.
5、,理由见解析.
【解析】
【分析】
先根据可得,根据平行线的性质可得,从而可得,再根据平行线的判定可得,然后根据平行线的性质可得,从而可得,最后根据平行线的判定即可得出结论.
【详解】
解:,理由如下:
∵,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.
冀教版七年级下册第七章 相交线与平行线综合与测试随堂练习题: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试随堂练习题,共21页。试卷主要包含了如图,点P是直线m外一点,A,如图,下列条件中不能判定的是,下列说法正确的是,有下列说法等内容,欢迎下载使用。
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共23页。
冀教版七年级下册第七章 相交线与平行线综合与测试同步达标检测题: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步达标检测题,共21页。试卷主要包含了如图所示,直线l1∥l2,点A,下列命题中是假命题的是等内容,欢迎下载使用。