冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题
展开冀教版七年级数学下册第七章相交线与平行线综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
2、如图,直线b、c被直线a所截,则与是( )
A.对顶角 B.同位角 C.内错角 D.同旁内角
3、如图,已知直线,相交于O,平分,,则的度数是( )
A. B. C. D.
4、如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )
A.15° B.20° C.25° D.30°
5、如图,给出下列条件,①∠1=∠2,②∠3=∠4,③ADBE,且∠D=∠B,④ADBE,且∠DCE=∠D,其中能推出ABDC的条件为( )
A.①② B.②③ C.③④ D.②③④
6、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )
A.等于4cm B.小于4cm
C.大于4cm D.不大于4cm
7、下列说法中正确的有( )
(1)两条直线被第三条直线所截,同位角相等;
(2)若,则,,互余;
(3)相等的两个角是对顶角;
(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.
A.个 B.个 C.个 D.个
8、下列说法正确的是( )
A.同位角相等
B.在同一平面内,如果a⊥b,b⊥c,则a⊥c
C.相等的角是对顶角
D.在同一平面内,如果a∥b,b∥c,则a∥c
9、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )
A.3.5 B.4 C.5 D.5.5
10、已知直线mn,如图,下列哪条线段的长可以表示直线与之间的距离( )
A.只有 B.只有 C.和均可 D.和均可
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、在同一平面内,过一点有且只有______直线与已知直线垂直.
注意:
①“过一点”中的点,可以在______,也可以在______;
②“有且只有”中,“有”指存在,“只有”指唯一性.
2、如图,直线AB和CD相交于点O,∠BOE=90°,∠DOE=130°,则∠AOC=______.
3、太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关.如图,从点照射到抛物线上的光线,等反射以后沿着与平行的方向射出.图中如果,,则________,________.
4、已知:如图,直线AB、CD被直线GH所截,,求证: ABCD.完成下面的证明:
证明:∵AB被直线GH所截,
∴_____
∵
∴______
∴______________( )(填推理的依据).
5、如图,将一块直角三角板与一张两边平行的纸条按照如图所示的方式放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2=∠3;④∠4+∠5=180°.其中正确的是________.(填序号)
三、解答题(5小题,每小题10分,共计50分)
1、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
证明:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD( )
∵MN∥AB,
∴∠A=( )( )
∵MN∥CD,
∴∠D= ( )
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
【应用拓展】如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.
2、如图,已知于点,于点,,试说明.
解:因为(已知),
所以( ).
同理.
所以( ).
即.
因为(已知),
所以( ).
所以( ).
3、如图所示,点、分别在、上,、均与相交,,,求证:.
4、已知在平面直角坐标系中的位置如图所示,其中每一个小方格都是边长为1个单位长度的正方形.
(1)将先向左平移6个单位长度,再向下平移6个单位长度,得到,请在坐标系中作出;
(2)直接写出四边形的面积.
5、如图,方格纸中每个小正方形的边长都是1.
(1)过点P画,PM与直线AB相交于点M;
(2)若点N在图中的格点上(不与点A重合),且直线NA与直线AC垂直,这样的格点(图中)有______个;
(3)连接PB、PC,则四边形PBAC的面积是______.
-参考答案-
一、单选题
1、D
【解析】
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
2、B
【解析】
【分析】
根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
【详解】
∠1与∠2是同位角
故选:B
【点睛】
本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
3、C
【解析】
【分析】
先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
【详解】
解:∵OA平分∠EOC,∠EOC=100°,
∴∠AOC=∠EOC=50°,
∴∠BOC=180°﹣∠AOC=130°.
故选:C.
【点睛】
本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
4、B
【解析】
【分析】
若使直线b与直线c平行,则∠1=180°-∠2=140°,还差20°,故旋转20°.
【详解】
解:
∵∠1=120°,
∴∠3=180°-120°=60°.
∵∠2=40°,
∴要使b∥c,则∠2=∠3,
∴直线b绕点A逆时针旋转60°-40°=20°.
故选B.
【点睛】
本题考查直线与平行线相交的性质,掌握这些性质是本题关键.
5、B
【解析】
【分析】
根据平行线的判定逐个判断即可.
【详解】
①∠1=∠2,
②∠3=∠4,
③ADBE,
∠D=∠B,
④∠DCE=∠D,
能推出ABDC的条件为②③
故选B
【点睛】
本题考查了平行线的性质与判定定理,掌握平行线的判定定理是解题的关键.
6、D
【解析】
【分析】
根据平行线间的距离的定义解答即可.
【详解】
解:分两种情况:
如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,
若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm
直线a与直线b之间的距离不大于4cm.
故选D.
【点睛】
本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.
7、A
【解析】
【分析】
两条平行直线被第三条直线所截时,同位角相等;两个和为的角互为余角;两相交线的对顶角相等;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离.
【详解】
(1)两条直线被第三条直线所截,同位角不一定相等,故错误;
(2)两个角的和为,这两个角互为余角,故错误;
(3)相等的两个角不一定是对顶角,对顶角一定相等,故错误;
(4)从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,故错误;
故选:A.
【点睛】
本题考查了同位角,余角,对顶角以及点到直线的距离.解题的关键在于正确理解各名词的定义.
8、D
【解析】
【分析】
根据同位角的定义、垂线的性质、对顶角的性质、平行公理依次判断.
【详解】
解:A. 同位角不一定相等,故该项不符合题意;
B. 在同一平面内,如果a⊥b,b⊥c,则ac,故该项不符合题意;
C. 相等的角不一定是对顶角,故该项不符合题意;
D. 在同一平面内,如果ab,bc,则ac,故该项符合题意;
故选:D.
【点睛】
此题考查了语句的判断,正确掌握同位角的定义、垂线的性质、对顶角的性质、平行公理是解题的关键.
9、D
【解析】
【分析】
直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.
【详解】
∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.
∵AB=3,
∴AC=5,
∴3≤AP≤5,
故AP不可能是5.5,
故选:D.
【点睛】
本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.
10、C
【解析】
【分析】
由平行线之间的距离的定义判定即可得解.
【详解】
解:从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两条平行线之间的距离,
线段和都可以示直线与之间的距离,
故选:C.
【点睛】
本题考查了平行线之间的距离,解题的关键是熟记平行线之间的距离的概念.
二、填空题
1、 一条 已知直线上 已知直线外
【解析】
略
2、40°##40度
【解析】
【分析】
先根据角的和差关系可求∠BOD,再根据对顶角相等可求∠AOC.
【详解】
解:∵∠BOE=90°,∠DOE=130°,
∴∠BOD=130°-90°=40°,
又
∴∠AOC=40°.
故答案为:40°.
【点睛】
本题考查了对顶角,关键是根据角的和差关系可求∠BOD.
3、 45°##45度 112°##45度
【解析】
【分析】
由平行线的性质即可得出,.
【详解】
由题意知AB//PQ//CD
∴
∴
故答案为:45°,112°
【点睛】
本题考查了平行线的性质,两直线平行,同位角相等、内错角相等、同旁内角互补.
4、 3 180° AB CD 同旁内角互补,两直线平行
【解析】
【分析】
先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD.
【详解】
证明:∵AB被直线GH所截,∠1=112°,
∴∠1=∠3=112°
∵∠2=68°,
∴∠2+∠3=180°,
∴AB∥CD,(同旁内角互补,两直线平行)
故答案为∠3,180°,AB,CD,同旁内角互补,两直线平行.
【点睛】
本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.
5、①②④
【解析】
【分析】
根据平行线的性质,直角三角板的性质对各小题进行验证即可得解.
【详解】
解:∵纸条的两边互相平行,
∴∠1=∠2,∠3=∠4,∠4+∠5=180°,故①,②,④正确;
∵三角板是直角三角板,
∴∠2+∠4=180°-90°=90°,
∵∠3=∠4,
∴∠2+∠3=90°,故③不正确.
综上所述,正确的是①②④.
故答案为:①②④.
【点睛】
本题考查了平行线的性质,直角三角板的性质,熟记性质与概念并准确识图是解题的关键.
三、解答题
1、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
【解析】
【分析】
基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
【详解】
解:基础问题:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(平行于同一条直线的两条直线平行),
∵MN∥AB,
∴∠A=∠AGM(两直线平行,内错角相等),
∵MN∥CD,
∴∠D=∠DGM(两直线平行,内错角相等),
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
类比探究:如图所示,过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD,
∵MN∥AB,
∴∠A=∠AGM,
∵MN∥CD,
∴∠D=∠DGM,
∴∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
又∵AB∥CD,
∴MN∥CD,PQ∥CD
∵MN∥AB,PQ∥AB,
∴∠BAG=∠AGM,∠BAH=∠AHP,
∵MN∥CD,PQ∥CD,
∴∠CDG=∠DGM,∠CDH=∠DHP,
∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
∴∠GDH=44°,∠DHP=22°,
∴∠CDG=66°,∠AHP=54°,
∴∠DGM=66°,∠BAH=54°,
∵AH平分∠BAG,
∴∠BAG=2∠BAH=108°,
∴∠AGM=108°,
∴∠AGD=∠AGM-∠DGM=42°.
【点睛】
本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
2、垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行
【解析】
【分析】
根据垂直定义得出,求出,根据平行线的判定推出即可.
【详解】
解:因为(已知),
所以(垂直的定义),
同理.
所以(等量代换),
即.
因为(已知),
所以(等式的性质,
所以(内错角相等,两直线平行).
故答案为:垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行
【点睛】
本题考查了垂直定义和平行线的判定的应用,熟练掌握平行线的判定是解题关键.
3、证明见解析
【解析】
【分析】
由,证明,再证,最后根据对顶角相等,可得答案.
【详解】
证明:∵,
∴,
∴,
又∵,
∴,
∴,
∴,
∵,
∴.
【点睛】
本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.
4、 (1)见解析
(2)54
【解析】
【分析】
(1)分别作出点A、B、C平移后得到对应点,再顺次连接即可;
(2)利用两个三角形的面积和计算即可.
(1)
解:如图所示,是所求作三角形;
(2)
解:;
;
四边形的面积为27+27=54.
【点睛】
本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的性质,会用面积和差计算面积.
5、(1)见解析;(2)3个;(3)10.5
【解析】
【分析】
(1)直接利用网格结合平行线的判定方法得出答案;
(2)利用数形结合的思想画出图形即可;
(3)利用四边形PBAC所在矩形减去周围三角形面积得出答案.
【详解】
解:(1)如图所示:
(2)这样的格点N共有3个,如图所示,
故答案为:3.
(3)四边形PBAC的面积为:3×7-×1×2-×5×2-×1×5-×2×2=10.5.
【点睛】
本题主要考查了应用设计与作图,正确借助网格分析是解题关键.
冀教版七年级下册第七章 相交线与平行线综合与测试随堂练习题: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试随堂练习题,共21页。试卷主要包含了如图,点P是直线m外一点,A,如图,下列条件中不能判定的是,下列说法正确的是,有下列说法等内容,欢迎下载使用。
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共23页。
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后作业题: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后作业题,共24页。