冀教版七年级下册第七章 相交线与平行线综合与测试达标测试
展开冀教版七年级下册第七章相交线与平行线章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,小华同学用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小( )
A.垂线段最短
B.经过一点有无数条直线
C.经过两点,有且仅有一条直线
D.两点之间,线段最短
2、如图,直线AB和CD相交于点O,若∠AOC=125°,则∠BOD等于( )
A.55° B.125° C.115° D.65°
3、下列各组图形中,能够通过平移得到的一组是( )
A. B.
C. D.
4、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
5、下列语句正确的个数是( )
(1)经过平面内一点有且只有一条直线与已知直线垂直;
(2)经过平面内一点有且只有一条直线与已知直线平行;
(3)在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
(4)在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.
A.1个 B.2个 C.3个 D.4个
6、下列说法错误的是( )
A.经过两点,有且仅有一条直线
B.平面内过一点有且只有一条直线与已知直线垂直
C.两点之间的所有连线中,线段最短
D.平面内过一点有且只有一条直线与已知直线平行
7、如图,不能推出a∥b的条件是( )
A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°
8、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )
A.100° B.140° C.160° D.105°
9、如图,l1∥l2,l3∥l4,与∠α互补的是( )
A.∠1 B.∠2 C.∠3 D.∠4
10、下列命题是真命题的是( )
A.内错角相等
B.过一点有且只有一条直线与已知直线垂直
C.相等的角是对顶角
D.过直线外一点,有且只有一条直线与已知直线平行
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知点O在直线AB上,,则______.
2、如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要______米.
3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的________.
4、如图,直线AB、CD相交于点O,射线OM平分∠AOC,若∠BOD=72°,则∠BOM=_________°.
5、下列说法:①对顶角相等;②两点之间的线段是两点间的距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤一个锐角的补角一定比它的余角大90°,正确的有______.(填序号)
三、解答题(5小题,每小题10分,共计50分)
1、P是三角形ABC内一点,射线PDAC,射线PEAB.
(1)当点D,E分别在AB,BC上时,
①补全图1;
②猜想∠DPE与∠A的数量关系,并证明;
(2)当点D,E都在线段BC上时,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
2、如图,已知AEBF,AC⊥AE,BD⊥BF,AC与BD平行吗?补全下面的解答过程(理由或数学式).
解:∵AEBF,
∴∠EAB= .( )
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD( )
∴∠EAB﹣ =∠FBG﹣ ,
即∠1=∠2.
∴ ( ).
3、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣ (邻补角定义)
=180°﹣ °
= °
∵OC平分∠AOF(已知)
∴∠AOC∠AOF( )
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC( )
=180°﹣90°﹣ °
= °
4、完成下列说理过程(括号中填写推理的依据):
已知:如图,直线AB,CD相交于点O,.求证:.
证明:,
.( ① )
,
.
直线AB,CD相交于点O,
.
.
= ② .( ③ )
直线相交于,
.
④ .( ⑤ )
.
5、如图所示,点、分别在、上,、均与相交,,,求证:.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据两点之间,线段最短解答即可.
【详解】
解:用剪刀沿虚线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.
故选:D.
【点睛】
本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.
2、B
【解析】
【分析】
根据对顶角相等即可求解.
【详解】
解:∵直线AB和CD相交于点O,∠AOC=125°,
∴∠BOD等于125°.
故选B.
【点睛】
本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.
3、B
【解析】
【分析】
根据平移的性质对各选项进行判断.
【详解】
A、左图是通过翻折得到右图,不是平移,故不符合题意;
B、上图可通过平移得到下图,故符合题意;
C、不能通过平移得到,故不符合题意;
D、不能通过平移得到,故不符合题意;
故选B.
【点睛】
本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.
4、A
【解析】
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
5、C
【解析】
【分析】
由题意直接根据平行公理及平行线的判定定理进行判断即可.
【详解】
解:经过平面内一点有且只有一条直线与已知直线垂直,故(1)正确;
经过直线外一点有且只有一条直线与已知直线平行,故(2)不正确;
平面内,平行具有传递性,故(3)正确;
同一平面内,如果两条直线都与第三条直线垂直,则同位角(内错角)相等,这两条直线互相平行,故(4)正确,
∴正确的有(1)、(3)、(4),
故选:C.
【点睛】
本题考查平行公理及平行线的判定定理,熟练掌握理解平行线公理及判定定理是解题的关键.
6、D
【解析】
【分析】
根据垂线的性质、线段的性质、直线的性质、平行公理判断下列选项.
【详解】
解:由垂线的性质、线段的性质、直线的性质可知、、正确;
A、根据直线的性质可知选项正确,不符合题意;
B、根据垂线的性质可知选项正确,不符合题意;
C、根据线段的性质可知选项正确,不符合题意;
D、由平行公理可知选项不正确,需要保证该点不在已知直线上,符合题意;
故选:D.
【点睛】
本题主要考查了垂线的性质、线段的性质、直线的性质、平行公理,解题的关键是掌握相关的概念.
7、B
【解析】
【分析】
根据平行线的判定方法,逐项判断即可.
【详解】
解:、和是一对内错角,当时,可判断,故不符合题意;
、和是邻补角,当时,不能判定,故符合题意;
、和是一对同位角,当时,可判断,故不合题意;
、和是一对同旁内角,当时,可判断,故不合题意;
故选B.
【点睛】
本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
8、B
【解析】
【分析】
根据方位角的含义先求解 再利用角的和差关系可得答案.
【详解】
解:如图,标注字母,
射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,
而
故选B
【点睛】
本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.
9、D
【解析】
【分析】
如图,先证明再证明 可得 再利用邻补角的定义可得答案.
【详解】
解:如图,
所以与∠α互补的是
故选D
【点睛】
本题考查的是平行线的性质,邻补角的定义,掌握“两直线平行,同位角相等”是解本题的关键.
10、D
【解析】
【分析】
根据平行线的性质、垂直的判定、对顶角和平行线的判定进行判断即可.
【详解】
解:A、两直线平行,内错角相等,原命题是假命题;
B、在同一平面上,过一点有且只有一条直线与已知直线垂直,原命题是假命题;
C、相等的角不一定是对顶角,原命题是假命题;
D、过直线外一点,有且只有一条直线与已知直线平行,是真命题;
故选:D.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的性质、垂直的判定、对顶角和平行线的判定.
二、填空题
1、30°##30度
【解析】
【分析】
根据邻补角性质,可得∠AOC+∠BOC=180°,结合已知∠AOC=5∠BOC,解方程可求∠BOC.
【详解】
解:∵∠AOC与∠BOC互为邻补角,
∴∠AOC+∠BOC=180°,①
又∵∠AOC=5∠BOC,②
把②代入①,可得5∠BOC+∠BOC=180°,
解得∠BOC=30°.
故答案为:30°.
【点睛】
此题考查的是角的计算,能够根据邻补角的定义列出方程是解决此题关键.
2、15
【解析】
【分析】
根据平移的性质可得,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,计算即可得出答案.
【详解】
解:由题意可知,
地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,
所以地毯的长度至少需要 12+3=15(米).
故答案为:15.
【点睛】
本题主要考查了平移现象,熟练应用平移的性质进行求解是解决本题的关键.
3、距离
【解析】
略
4、144
【解析】
【分析】
首先根据邻补角互补,对顶角相等可得∠AOC=72°,∠BOC=108°,再根据角平分线的性质可得∠MOC的度数,进而可得答案.
【详解】
解:∵∠BOD=72°,
∴∠AOC=72°,∠BOC=108°,
∵OM平分∠AOC,
∴∠MOC=36°,
∴∠BOM=∠BOC+∠MOC=144°.
故答案为:144.
【点睛】
本题主要考查了对顶角和邻补角,角平分线的定义,关键是掌握邻补角互补,对顶角相等.
5、①⑤
【解析】
【分析】
根据对顶角、线段、直线、垂直的定义、平行线的性质及余补角的性质可直接进行求解.
【详解】
解:①对顶角相等,原说法正确;②两点之间的线段长度是两点间的距离,原说法错误;③过直线外一点有且只有一条直线与已知直线平行,原说法错误;④在同一平面内,过一点有且只有一条直线与已知直线垂直,原说法错误;⑤一个锐角的补角一定比它的余角大90°,原说法正确;
综上所述:正确的有①⑤;
故答案为①⑤.
【点睛】
本题主要考查对顶角、线段、直线、垂直的定义、平行线的性质及余补角的性质,熟练掌握相关概念及性质是解题的关键.
三、解答题
1、 (1)①见解析;②∠DPE+∠A=180°.证明见解析
(2)不成立,此时∠DPE=∠A.证明见解析
【解析】
【分析】
(1)①根据题意补全图形即可;
②根据平行线的性质,即可得到∠A=∠BDP,∠DPE+∠BDP=180°,即可得到∠DPE与∠A的数量关系;
(2)先反向延长射线PD交AB于点D1,可知∠DPE+∠D1PE=180°,由(1)结论可知∠D1PE+∠A=180°,进而得出∠DPE=∠A.
(1)
解:①补全图形,如图1所示.
②∠DPE+∠A=180°.
证明:∵PD∥AC,
∴∠A=∠BDP.
∵PE∥AB,
∴∠DPE+∠BDP=180°,
∴∠DPE+∠A=180°;
(2)
解:不成立,此时∠DPE=∠A.
理由如下:如图2,反向延长射线PD交AB于点D1,可知∠DPE+∠D1PE=180°.
由(1)结论可知∠D1PE+∠A=180°.
∴∠DPE=∠A.
【点睛】
本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.
2、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBD;AC;BD;同位角相等,两直线平行
【解析】
【分析】
由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.
【详解】
∵AE∥BF,
∴∠EAB=∠FBG(两直线平行,同位角相等).
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD(等量代换),
∴∠EAB﹣∠EAC=∠FBG﹣∠FBD,
即∠1=∠2.
∴AC∥BD(同位角相等,两直线平行).
故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBD;AC,BD,同位角相等,两直线平行.
【点睛】
本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.
3、角平分线的定义,平角的定义,
【解析】
【分析】
先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
【详解】
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣(邻补角定义)
=180°﹣40°
=140°
∵OC平分∠AOF(已知)
∴∠AOC∠AOF(角平分线的定义)
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
=180°﹣90°﹣70°
=20°
故答案为:角平分线的定义,平角的定义,
【点睛】
本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
4、①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等
【解析】
【分析】
根据证明过程判断从上一步到下一步的理由即可.
【详解】
证明:,
.(①角平分线定义)
,
.
直线AB,CD相交于点O,
.
.
=②.(③等角的余角相等)
直线相交于,
.
④.(⑤同角的补角相等)
.
故答案为:①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等
【点睛】
本题考查了对顶角、余角和补角的性质、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.
5、证明见解析
【解析】
【分析】
由,证明,再证,最后根据对顶角相等,可得答案.
【详解】
证明:∵,
∴,
∴,
又∵,
∴,
∴,
∴,
∵,
∴.
【点睛】
本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题,共22页。试卷主要包含了下列说法中正确的有,下列命题中,是真命题的是等内容,欢迎下载使用。
冀教版七年级下册第七章 相交线与平行线综合与测试达标测试: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共24页。试卷主要包含了下列命题中,是真命题的是,下列命题中,为真命题的是等内容,欢迎下载使用。
冀教版七年级下册第七章 相交线与平行线综合与测试课后测评: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课后测评,共22页。试卷主要包含了如图,直线b等内容,欢迎下载使用。