冀教版七年级下册第七章 相交线与平行线综合与测试达标测试
展开冀教版七年级下册第七章相交线与平行线专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°
A. B. C. D.
2、下列命题不正确的是( )
A.直角三角形的两个锐角互补 B.两点确定一条直线
C.两点之间线段最短 D.三角形内角和为180°
3、下列说法正确的有( )
①两点之间的所有连线中,线段最短;
②相等的角叫对顶角;
③过一点有且只有一条直线与已知直线平行;
④若AC=BC,则点C是线段AB的中点;
⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.
A.1个 B.2个 C.3个 D.4个
4、如图,下列条件中,不能判断∥的是( )
A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠4
5、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
6、如图所示,AB∥CD,若∠2=2∠1﹣6°,则∠2等于( )
A.116° B.118° C.120° D.124°
7、下列命题中,为真命题的是( )
A.若,则 B.若,则
C.同位角相等 D.对顶角相等
8、下列说法中,错误的是( )
A.两点之间线段最短
B.若AC=BC,则点C是线段AB的中点
C.过直线外一点有且只有一条直线与已知直线平行
D.平面内过直线外一点有且只有一条直线与已知直线垂直
9、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )
A.30° B.40° C.50° D.60°
10、如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )
A.15° B.20° C.25° D.30°
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=58°,则∠BED的度数为______.
2、如图,将直角三角形ABC沿BC方向平移得到直角三角形DEF,其中AB=6,BE=3,DM=2,则阴影部分的面积是______.
3、(1)如图1,若直线m、n相交于点O,∠1=90°,则a______b;
(2)若直线AB、CD相交于点O,且AB⊥CD,则∠BOD =______;
(3)如图2,BO⊥AO,∠BOC与∠BOA的度数之比为1∶3,那么∠COA=___ ,∠BOC的补角为______.
4、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.
5、如图,OA⊥OB,若∠1=55°16′,则∠2的度数是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、(1)探究:如图1,ABCDEF,试说明.
(2)应用:如图2,ABCD,点在、之间,与交于点,与交于点.若,,则的大小是多少?
(3)拓展:如图3,直线在直线、之间,且ABCDEF,点、分别在直线、上,点是直线上的一个动点,且不在直线上,连接、.若,则 度(请直接写出答案).
2、如图,直线AB与CD相交于点O,∠AOM=90°.
(1)如图1,若OC平分∠AOM,求∠AOD的度数;
(2)如图2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度数.
3、如图,∠ENC+∠CMG=180°,AB∥CD.
(1)求证:∠2=∠3.
(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.
4、如图,已知AE平分∠BAC交BC于点E,AF平分∠CAD交BC的延长线于点F,∠B=64°,∠EAF=58°,试判断AD与BC是否平行.
解:∵AE平分∠BAC,AF平分∠CAD(已知),
∴∠BAC=2∠1,∠CAD= ( ).
又∵∠EAF=∠1+∠2=58°,
∴∠BAD=∠BAC+∠CAD
=2(∠1+∠2)
= °(等式性质).
又∵∠B=64°(已知),
∴∠BAD+∠B= °.
∴ ( ).
5、如图,的三个顶点A、B、C在正方形网格中,每小方格的边长都为1cm.请在方格纸上画图并回答下列问题:
(1)延长线段AB到点D,使;
(2)过C点画AB的垂线,垂足为点E;
(3)过A点画直线,交直线CE于点F;
(4)点C到直线AB的距离为线段 的长度.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据平行线的性质可得,进而根据即可求解
【详解】
解:
故选C
【点睛】
本题考查了平行线的性质,掌握平行线的性质是解题的关键.
2、A
【解析】
【分析】
根据直角三角形两锐角互余可直接进行判断.
【详解】
解:A、直角三角形的两个锐角互补,是假命题,符合题意;
B、两点确定一条直线,是真命题,不符合题意;
C、两点之间线段最短,是真命题,不符合题意;
D、三角形内角和为,是真命题,不符合题意;
故选A.
【点睛】
本题考查了假命题的判断,解题的关键是熟练掌握直角三角形两锐角互余.
3、B
【解析】
【分析】
根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.
【详解】
解:①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,
⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;
所以,正确的结论有①⑤共2个.
故选:B.
【点睛】
本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.
4、D
【解析】
【分析】
根据平行线的判定定理对各选项进行逐一判断即可.
【详解】
解:、,内错角相等,
,故本选项错误,不符合题意;
、,同位角相等,
,故本选项错误,不符合题意;
、,同旁内角互补,
,故本选项错误,不符合题意;
、,它们不是内错角或同位角,
与的关系无法判定,故本选项正确,符合题意.
故选:D.
【点睛】
本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.
5、D
【解析】
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
6、B
【解析】
【分析】
由AB与CD平行,利用两直线平行同旁内角互补得到∠2+∠3=180°,由对顶角相等得到∠1=∠3,等量代换得到∠1=180°-∠2,再代入∠2=2∠1﹣6°,即可求出∠2的度数.
【详解】
解:如图:
∵AB∥CD,
∴∠2+∠3=180°,
∴∠3=180°-∠2,
∵∠1=∠3,
∴∠1=180°-∠2,
∴∠2=2(180°-∠2)﹣6°,
∴∠2=118°,
故选:B.
【点睛】
此题考查了对顶角性质和平行线的性质,掌握两直线平行同旁内角互补是解答此题的关键.
7、D
【解析】
【分析】
利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
【详解】
解:A、若,则或,故A错误.
B、当时,有,故B错误.
C、两直线平行,同位角相等,故C错误.
D、对顶角相等,D正确.
故选:D .
【点睛】
本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
8、B
【解析】
【分析】
根据线段公理可判断A,根据点C与线段AB的位置关系可判断B,根据平行公理可判断C,根据垂线公理可判断D即可.
【详解】
A. 两点之间线段最短,正确,故选项A不合题意;
B. 若AC=BC,点C在线段AB外和线段AB上两种情况,当点C在线段AB上时,则点C是线段AB的中点,当点C不在线段AB上,则点C不是线段AB中点,不正确,故选项B符合题意;
C. 过直线外一点有且只有一条直线与已知直线平行,正确,故选项C不合题意;
D. 平面内过直线外一点有且只有一条直线与已知直线垂直,正确,故选项D不合题意.
故选B.
【点睛】
本题考查基本事实即公理,和线段的中点,掌握基本事实即公理,和线段的中点是解题关键.
9、C
【解析】
【分析】
由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
【详解】
解:由题意,
∵∠BMN与∠AME是对顶角,
∴∠BMN=∠AME=130°,
∵AB∥CD,
∴∠BMN+∠DNM=180°,
∴∠DNM=50°;
故选:C.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
10、B
【解析】
【分析】
若使直线b与直线c平行,则∠1=180°-∠2=140°,还差20°,故旋转20°.
【详解】
解:
∵∠1=120°,
∴∠3=180°-120°=60°.
∵∠2=40°,
∴要使b∥c,则∠2=∠3,
∴直线b绕点A逆时针旋转60°-40°=20°.
故选B.
【点睛】
本题考查直线与平行线相交的性质,掌握这些性质是本题关键.
二、填空题
1、32°
【解析】
略
2、
【解析】
【分析】
由平移的性质可得阴影四边形的面积=梯形ABEM的面积,利用梯形的面积公式计算可求解.
【详解】
解:由平移可得:DE=AB=6,阴影四边形DMCF的面积=梯形ABEM的面积,
∵DM=2,
∴ME=DE-DM=6-2=4,
∵BE=3,
∴梯形ABEM的面积=(ME+AB)•BE
=(4+6)×3
=15.
故答案为:15.
【点睛】
本题主要考查了平移的性质,梯形的面积公式,掌握平移的性质是解题的关键.
3、 ⊥ 90° 60° 150°
【解析】
略
4、
【解析】
【分析】
先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.
【详解】
解:,
,
是的平分线,
,
,
故答案为:.
【点睛】
本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.
5、故答案为:
【点睛】
本题考查了角的计算,对顶角相等,熟练掌握对顶角相等这条性质是解题的关键.
75.
【解析】
【分析】
直接利用垂线的定义得出∠1+∠2=90°,再求∠1的余角∠2,结合度分秒转化得出答案.
【详解】
解:∵OA⊥OB,
∴∠AOB=90°,
∴∠1+∠2=90°,
∵∠1=55°16′,
∴∠2=90°﹣55°16′=34°44′.
故答案为:34°44′.
【点睛】
本题考查垂直定义,求一个角的余角,度分秒互化,掌握垂直定义,求一个角的余角,度分秒互化是解题关键.
三、解答题
1、(1)见解析;(2)60°;(3)70或290
【解析】
【分析】
(1)由可得,,,则;
(2)利用(1)中的结论可知,,则可得的度数为,由对顶角相等可得;
(3)结合(1)中的结论可得,注意需要讨论是钝角或是锐角时两种情况.
【详解】
解:(1)如图1,,
,,
,
.
(2)由(1)中探究可知,,
,且,
,
;
(3)如图,当为钝角时,
由(1)中结论可知,,
;
当为锐角时,如图,
由(1)中结论可知,,
即,
综上,或.
故答案为:70或290.
【点睛】
本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.
2、 (1)135°
(2)54°
【解析】
【分析】
(1)由∠AOM=90°及角平分线的定义可得∠AOC的度数,再互补关系即可求得结果;
(2)由已知设∠NOB=x°,则∠BOC=4x°,∠CON=3x°,由角平分线的定义及垂直的条件可得关于x的方程,解方程即可求得结果.
(1)
∵∠AOM=90°,OC平分∠AOM
∴∠AOC=∠AOM=×90°=45°
∵∠AOC+∠AOD=180°
∴∠AOD=180°﹣∠AOC=180°﹣45°=135°
即∠AOD的度数为135°
(2)
∵∠BOC=4∠NOB
∴设∠NOB=x°,∠BOC=4x°
∴∠CON=∠COB﹣∠BON=4x°﹣x°=3x°
∵OM平分∠CON
∴∠COM=∠MON=∠CON=x°
∵∠BOM=x°+x°=90°
∴x=36
∴∠MON=x°=×36°=54°
即∠MON的度数为54°
【点睛】
本题考查了角平分线的定义、垂直定义、互余与互补的定义等知识,运用了方程思想,熟练运用这些知识是关键.
3、(1)见解析;(2)34°
【解析】
【分析】
(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;
(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.
【详解】
(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,
∴∠ENC+∠FMN=180°,
∴FG∥ED,
∴∠2=∠D,
∵AB∥CD,
∴∠3=∠D,
∴∠2=∠3;
(2)解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=∠1+70°,∠ACB=42°,
∴∠1+70°+∠1+42°=180°,
∴∠1=34°,
∵AB∥CD,
∴∠B=∠1=34°.
故答案为:34°.
【点睛】
本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.
4、2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行
【解析】
【分析】
由AE平分∠BAC,AF平分∠CAD,利用角平分线的定义可得出∠BAC=2∠1,∠CAD=2∠2,结合∠EAF=∠1+∠2=58°可得出∠BAD=116°,由∠B=64°,∠BAD=116°,可得出∠BAD+∠B=180°,再利用“同旁内角互补,两直线平行”即可得出AD∥BC.
【详解】
解:∵AE平分∠BAC,AF平分∠CAD(已知),
∴∠BAC=2∠1,∠CAD=2∠2(角平分线的定义).
又∵∠EAF=∠1+∠2=58°,
∴∠BAD=∠BAC+∠CAD
=2(∠1+∠2)
=116°(等式性质).
又∵∠B=64°(已知),
∴∠BAD+∠B=180°.
∴AD∥BC(同旁内角互补,两直线平行).
故答案为:2∠2;角平分线的定义;116;180;AD;BC;同旁内角互补,两直线平行.
【点睛】
此题考查了角平分线的定义,角的计算,平行线的判定.正确掌握线段、角、相交线与平行线的知识是解题的关键,还需掌握推理能力.
5、 (1)AB=BD,见详解;
(2)CE⊥AD于E,见详解;
(3)AF∥BC;见详解;
(4)CE.
【解析】
【分析】
(1)根据网格的性质,线段中点定义,得出BD=3,延长即可;
(2)根据网格的性质,利用点平移方法即可画出CE⊥AD;
(3)根据网格中小正方形对角线的性质,即可画出AF∥BC;
(4)根据网格的性质, CE⊥AB,根据点到直线的距离得出CE的长即可得
(1)
解:根据题意,得AB=3cm,在AB的延长线上,截取BD=3
则AB=BD,如图所示:
(2)
解:如图所示:点C向下平移2个单位取点E,连结CE,则CE⊥AD于E;
(3)
解:如图所示:∵BE=2=CE,AB=3,
∴AE=AB+BE=3+2=5,
∴点C向上平移3个格到点F,连结AF,则AF∥BC,
∵AF是正方形网格的对角线,CB是正方形网格的对角线,
∴∠FAB=45°,∠CBE=45°,
∵∠FAB=∠CBE=45°,
∴AF∥BC;
(4)
点C到直线AB的距离为线段CE的长度.
故答案为CE.
【点睛】
此题主要考查正方形网格中的作图综合问题,熟练掌握网格的性质,中点定义,垂线定义,平行线判定与性质,点到直线的距离是解题关键.
初中冀教版第七章 相交线与平行线综合与测试达标测试: 这是一份初中冀教版第七章 相交线与平行线综合与测试达标测试,共23页。试卷主要包含了下列命题不正确的是等内容,欢迎下载使用。
2020-2021学年第七章 相交线与平行线综合与测试习题: 这是一份2020-2021学年第七章 相交线与平行线综合与测试习题,共24页。试卷主要包含了下列说法中,错误的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课时训练: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课时训练,共21页。试卷主要包含了如图,直线b,下列说法中不正确的是,如图,,交于点,,,则的度数是,下列各图中,和是对顶角的是等内容,欢迎下载使用。