初中第八章 整式乘法综合与测试一课一练
展开
这是一份初中第八章 整式乘法综合与测试一课一练,共18页。试卷主要包含了下列计算正确的是,若,则的值是,计算等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1;…,根据上述规律计算:2+22+23+…+262+263=( )A.264+1 B.264+2 C.264﹣1 D.264﹣22、中国某公司研发的智能分拣机器人可以实现快速分拣,每天工作8小时可以分拣大约128000件包裹.128000用科学记数法表示为是( )A. B. C. D.3、下列运算正确的是( )A.(﹣a)2=﹣a2 B.2a2﹣a2=2C.a2•a=a3 D.(a﹣1)2=a2﹣14、若代数式是一个完全平方式,那么k的值是( )A.1 B.2 C.3 D.45、已知am=5,an=2,则a2m+n的值等于( )A.50 B.27 C.12 D.256、南宁东站某天输送旅客130900人,用科学记数法表示130900是( )A. B. C. D.7、下列计算正确的是( )A. B. C. D.8、若,则的值是( )A.1 B. C.2 D.9、计算(3x2y)2的结果是( )A.6x2y2 B.9x2y2 C.9x4y2 D.x4y210、下列计算正确的是( )A. B.C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、据第七次全国人口普查发布的数据显示,2020年上海市总人口约为24870000人,将24870000这个数保留两个有效数字并用科学记数法表示是______.2、直接写出计算结果:(1)=____;(2)____;(3)=____;(4)102×98=____.3、若,,则________.4、截至2021年10月30日,电影《长津湖》的累计票房达到大约5500000000元,数据5500000000用科学记数法表示为_________.5、若有意义,则实数的取值范围是 __.三、解答题(5小题,每小题10分,共计50分)1、计算:2、化简求值,其中 ;3、计算:4、阅读材料一:可以展开成一个有规律的多项式:;;;;……阅读材料二:我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.下面我们依次对展开式的各项系数进一步研究发现,当取正整数时可以单独列成表中的形式:例如,在三角形中第二行的三个数1,2,1,恰好对应展开式中的系数,(1)结合两个材料,写出的展开式:(2)多项式的展开式是一个_____次_____项式?并预测第三项的系数是_____;(3)请你猜想多项式取正整数)的展开式的各项系数之和,并进行合理说明(结果用含字母的代数式表示);(4)利用材料中的规律计算:(不用材料中的规律计算不给分).5、计算:(1);(2). -参考答案-一、单选题1、D【解析】【分析】先由规律,得到(x64﹣1)÷(x﹣1)的结果,令x=2得结论.【详解】解:有上述规律可知:(x64﹣1)÷(x﹣1)=x63+x62+…+x2+x+1当x=2时,即(264﹣1)÷(2﹣1)=1+2+22+…+262+263∴2+22+23+…+262+263=264﹣2.故选:D.【点睛】本题考查了平方差公式、及数字类的规律题,认真阅读,总结规律,并利用规律解决问题.2、C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.据此解答即可.【详解】解:128000=1.28×105,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.3、C【解析】【分析】根据乘方的意义,合并同类项,同底数幂的乘法,完全平方公式逐项分析即可.【详解】解:A.(﹣a)2=a2,故不正确;B. 2a2﹣a2=a2,故不正确;C. a2•a=a3,正确;D.(a﹣1)2=a2﹣2 a +1,故不正确;故选C.【点睛】本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.完全平方公式是(a±b)2=a2±2ab+b2.4、D【解析】【分析】根据完全平方公式即可求出答案.【详解】解:代数式是一个完全平方式,则故选D【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.5、A【解析】【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:∵am=5,an=2,∴a2m+n=×an=52×2=50.故选:A.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.6、C【解析】【分析】科学记数法的表示形式为的形式,其中1≤a<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数.【详解】解:, 故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤a<10,n为整数,表示时关键要正确确定a的值以及n的值.7、A【解析】【分析】根据整式的乘除运算法则逐个运算即可.【详解】解:选项A:,故选项A正确;选项B:,故选项B错误;选项C:,故选项C错误;选项D:,故选项D错误;故选:A.【点睛】本题考查了同底数幂的乘、除法,幂的乘方及积的乘方等,属于基础题,计算过程中细心即可.8、B【解析】【分析】,代值求解即可.【详解】解:∵∴故选B.【点睛】本题考查了代数式求值.解题的关键在于将代数式化成与已知式子相关的形式.9、C【解析】【分析】直接利用积的乘方和幂的乘方运算法则计算得出答案.【详解】解:(3x2y)2=9x4y2.故选:C.【点睛】此题主要考查了积的乘方和幂的乘方运算,正确掌握相关运算法则是解题关键.10、D【解析】【分析】利用完全平方公式计算即可.【详解】解:A、原式=a2+2ab+b2,本选项错误;B、原式==-a2+2ab-b2,本选项错误;C、原式=a2−2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项正确,故选:D.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题1、【解析】【分析】用科学记数法保留有效数字,在a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入进行取舍.【详解】解:.故答案是:.【点睛】本题主要考查了科学记数法以及有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.2、 -12 -1 ax 9996【解析】【分析】(1)先乘方,再加减即可;(2)逆用积的乘方法则进行计算;(3)运用幂的乘方法则,同底数幂的乘除法法则以及积的乘方法则计算即可;(4)运用平方差公式计算即可.【详解】解:(1)=﹣1+(﹣10)﹣1=﹣1﹣10﹣1=﹣12.故答案为:﹣12.(2)=()101×()101()101=﹣()101=﹣1.故答案为:﹣1.(3)=a2x﹣2•ax+1÷a2x﹣1=a2x﹣2+x+1﹣(2x﹣1)=ax.故答案为:ax.(4)102×98=(100+2)×(100﹣2)=100²﹣2²=9996.故答案为:9996.【点睛】本题考查了实数的运算,平方差公式,同底数幂的乘除法,幂的乘方与积的乘方,零指数幂,负整数指数幂,熟练掌握各运算法则是解题关键.3、12【解析】【分析】由变形为,再把和代入求值即可.【详解】解:,,.故答案为:12.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是将变形为.4、【解析】【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.【详解】解:.故答案为:【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.5、【解析】【分析】利用零指数幂的意义解答即可.【详解】解:零的零次幂没有意义,,.故答案为:.【点睛】本题主要考查了零指数幂,利用零指数幂的底数不为零解答是解题的关键.三、解答题1、x4-8x2+16【解析】【分析】根据平方差公式和完全平方公式解答即可.【详解】解:原式=(x2-4)(x2-4)=(x2-4)2=x4-8x2+16.【点睛】本题考查了平方差公式和完全平方公式.掌握乘法的平方差公式和完全平方公式的特点,熟练运用平方差公式和完全平方公式是解决本题的关键.2、,6.【解析】【分析】先利用完全平方公式和平方差公式去括号,然后合并同类项,最后代值计算即可.【详解】解: 当时,原式.【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握乘法公式.3、x2-y2-4z2+4yz【解析】【分析】根据平方差公式、完全平方公式解决此题.【详解】解:(x+y-2z)(x-y+2z)=[x+(y-2z)][x-(y-2z)]=x2-(y-2z)2=x2-(y2+4z2-4yz)=x2-y2-4z2+4yz.【点睛】本题主要考查平方差公式、完全平方公式,熟练掌握平方差公式、完全平方公式是解决本题的关键.4、 (1)5,10,10,5(2),,(3),理由见解析(4)1【解析】【分析】(1)根据材料二的规律即可得;(2)根据归纳出规律,由此即可得;(3)先求出的展开式的各项系数之和,再归纳出一般规律,由此即可得;(4)参考的展开式即可得.(1)解:由材料二得:,故答案为:5,10,10,5;(2)解:是一次二项式,的展开式是二次三项式,的展开式是三次四项式,则多项式的展开式是次项式,由材料二的图可知,的第三项的系数是,的第三项的系数是,的第三项的系数是,的第三项的系数是,归纳类推得:的第三项的系数是,故答案为:,,;(3)解:多项式取正整数)的展开式的各项系数之和为,理由如下:的展开式的各项系数之和是,的展开式的各项系数之和是,的展开式的各项系数之和是,的展开式的各项系数之和是,归纳类推得:多项式的展开式的各项系数之和为;(4)解:.【点睛】本题考查了多项式的乘法,正确归纳类推出一般规律是解题关键.5、 (1);(2).【解析】【分析】(1)根据单项式乘以多项式运算法则计算即可得答案;(2)根据多项式乘以多项式运算法则计算即可得答案.(1)==.(2)===.【点睛】本题考查整式的乘法,单项式乘以多项式,用单项式分别乘以多项式中的每一项,再把所得的积相加;多项式乘以多项式,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加;熟练掌握运算法则是解题关键.
相关试卷
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试巩固练习,共18页。试卷主要包含了若,则的值为,下列计算正确的是.A.B.,利用如图①所示的长为a,计算,计算的结果是等内容,欢迎下载使用。
这是一份七年级下册第八章 整式乘法综合与测试复习练习题,共15页。试卷主要包含了下列计算中,正确的是,已知,,则下列关系成立的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第八章 整式乘法综合与测试课时训练,共15页。试卷主要包含了已知ax2+24x+b=,已知,,则的值为,若,,则代数式的值是,下列运算正确的是等内容,欢迎下载使用。