初中数学冀教版七年级下册第八章 整式乘法综合与测试复习练习题
展开
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试复习练习题,共16页。试卷主要包含了计算得,片仔癫,下列计算结果正确的是,观察下列各式,计算,正确结果是,下列计算正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( )A. B. C. D.2、已知,则的值是( )A.7 B.8 C.9 D.103、若( ),则括号内应填的代数式是( )A. B. C. D.4、计算得( )A. B. C. D.5、片仔癫(漳州)医药有限公司是漳州地区药品流通领域的龙头企业,截止2021年11月1日,约250300000000元市值排名福建省上市公司第四名,将该数据用科学记数法表示为( )A.0.2503×1012 B.2.503×1011C.25.03×1010 D.2503×1086、下列计算结果正确的是( )A.a+a2=a3 B.2a6÷a2=2a3C.2a2•3a3=6a6 D.(2a3)2=4a67、观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1;…,根据上述规律计算:2+22+23+…+262+263=( )A.264+1 B.264+2 C.264﹣1 D.264﹣28、计算,正确结果是( )A. B. C. D.9、下列计算正确的是( )A.a+a=a2 B.a3÷a=a2 C.(a﹣1)2=a2﹣1 D.(2a)3=6a310、下列运算正确的是( )A. B.C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、将122000000用科学记数法表示为____________.2、若与是同类项,则____.3、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.4、设为正整数,若是完全平方数,则________.5、第七次全国人口普查结果公布,宜春市常住人口总数大约为501万人,把数字501万用科学记数法表示为______三、解答题(5小题,每小题10分,共计50分)1、计算:.2、(1)计算:(2)化简:3、例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因为ab=1,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)填空:若(4﹣x)x=5,则(4﹣x)2+x2= ;(3)如图所示,已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,CF=2,长方形EMFD的面积是12,则x的值为 .4、化简后求值:, 其中:5、计算:(﹣3a2)3+(4a3)2﹣a2•a4. -参考答案-一、单选题1、A【解析】【分析】科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以【详解】解:40210000 故选:A【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.2、C【解析】【分析】把化为,代入,整理后即可求解.【详解】解:∵,∴====,故答选:C【点睛】此题考查了代数式求值,掌握平方差公式是解答此题的关键.3、D【解析】【分析】9b2-a2 可以看作(3b)2-a2,利用平方差公式,可得出答案.【详解】解:∵(3b+a)(3b-a)=9b2-a2,即(3b+a)(3b-a)=(3b)2-a2,∴括号内应填的代数式是3b-a.故选:D.【点睛】本题考查平方差公式的特征,熟记平方差公式(a+b)(a-b)=a2-b2,是解决此题的关键.4、A【解析】【分析】变形后根据完全平方公式计算即可.【详解】解:==,故选A.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.5、B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数据250300000000用科学记数法表示为2.503×1011.故选:B.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、D【解析】【分析】根据合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方法则逐项分析即可.【详解】解:A. a与a2不是同类项,不能合并,故不正确;B. 2a6÷a2=2a4,故不正确;C. 2a2•3a3=6a5,故不正确;D. (2a3)2=4a6,正确;故选D.【点睛】本题考查了合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方运算,熟练掌握运算法则是解答本题的关键.7、D【解析】【分析】先由规律,得到(x64﹣1)÷(x﹣1)的结果,令x=2得结论.【详解】解:有上述规律可知:(x64﹣1)÷(x﹣1)=x63+x62+…+x2+x+1当x=2时,即(264﹣1)÷(2﹣1)=1+2+22+…+262+263∴2+22+23+…+262+263=264﹣2.故选:D.【点睛】本题考查了平方差公式、及数字类的规律题,认真阅读,总结规律,并利用规律解决问题.8、D【解析】【分析】根据单项式除以单项式的运算法则进行计算后即可确定正确的选项.【详解】解:原式=,故选:D.【点睛】本题考查了整式的除法,了解整式除法的运算法则是解答本题的关键,难度较小.9、B【解析】【分析】根据合并同类项、完全平方公式、积的乘方、同底数幂的除法进行计算即可.【详解】解:A、a+a=2a,原计算错误,该选项不符合题意;B、a3÷a=a2,正确,该选项符合题意;C、(a﹣1)2=a2-2a+1,原计算错误,该选项不符合题意;D、(2a)3=8a3,原计算错误,该选项不符合题意;故选:B.【点睛】本题考查了合并同类项、完全平方公式、积的乘方、同底数幂的除法,是基础知识要熟练掌握.10、C【解析】【分析】根据整式的加减乘除四则运算法则及完全平方公式逐个求解即可.【详解】解:选项A:,故选项A错误;选项B:,故选项B错误;选项C:,故选项C正确;选项D:,故选项D错误;故选:C.【点睛】本题考查了整式的四则运算,属于基础题,熟练掌握四则运算法则是解决本题的关键.二、填空题1、【解析】【分析】结合题意,根据科学记数法的一般表达形式分析,即可得到答案.【详解】122000000用科学记数法表示为:.故答案为:.【点睛】本题考查了科学记数法的知识,解题的关键是熟练掌握科学记数法的性质,从而完成求解.2、【解析】【分析】由同类项的定义可得n=3,m=2,由单项式乘法法则计算即可得.【详解】∵由与是同类项∴n=3,m=2则故答案为:【点睛】本题考查了同类项的定义以及单项式乘单项式的法则,这类题主要是根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.并建立方程(组)来解决问题,注意字母的顺序可能有变化.单项式乘单项式,把它们的系数、同底数幂分别向乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因事.3、4m+12##12+4m【解析】【分析】根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.【详解】解:由面积的和差,得长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).由长方形的宽为3,可得长方形的长是(2m+3),长方形的周长是2[(2m+3)+3]=4m+12.故答案为:4m+12.【点睛】本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.4、4或19【解析】【分析】将n2+9n-3转化成一个完全平方数再加一个数,只有这个数为0时,原式是完全平方数,求出n再判断,即可得出答案.【详解】解:①n2+9n-3=n2+2n+7n-3=(n2+2n+1)+(7n-4)=(n+1)2+(7n-4),∵n2+9n-3是完全平方数,∴(n+1)2+(7n-4)是完全平方数,∴7n-4=0,∴n=(不是正整数,不符合题意),②n2+9n-3=n2+4n+5n-3=(n2+4n+4)+(5n-7)=(n+2)2+(5n-7),∵n2+9n-3是完全平方数,∴(n+2)2+(5n-7)是完全平方数,∴5n-7=0,∴n=(不是正整数,不符合题意),③n2+9n-3=n2+6n+3n-3=(n2+6n+9)+(3n-12)=(n+3)2+(3n-12),∵n2+9n-3是完全平方数,∴(n+3)2+(3n-12)是完全平方数,∴3n-12=0,∴n=4,④n2+9n-3=n2+8n+n-3=(n2+8n+16)+(n-19)=(n+4)2+(n-19),∵n2+9n-3是完全平方数,∴(n+4)2+(n-19)是完全平方数,∵n是正整数,∴n=19,⑤n2+9n-3=n2+10n-n-3=(n2+10n+25)+(-n-28)=(n+5)2+(-n-28),∵n为正整数,∴-n-28<0,综上所述,n的值为4或19,故答案为:4或19.【点睛】此题主要考查了完全平方数,配方法,用分类讨论的思想解决问题是解本题的关键.5、【解析】【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.【详解】.故答案为:【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.三、解答题1、【解析】【分析】根据完全平方公式、平方差公式及单项式与多项式的乘法法则逐个运算,最后合并同类项即可.【详解】解:原式.【点睛】本题考查了完全平方公式、平方差公式及多项式的乘法法则,属于基础题,计算过程中细心即可.2、(1);(2)【解析】【分析】(1)根据负整数指数幂、零指数幂可以解答本题;(2)根据幂的乘方和同底数幂的乘除法可以解答本题.【详解】解:(1);(2).【点睛】本题考查了幂的乘方、同底数幂的乘除、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.3、 (1)12(2)6(3)5【解析】【分析】(1)根据代入计算即可;(2)由于(4-x)+x=4,将转化为,然后代入计算即可;(3)根据面积公式可得(x-1)(x-2)=12,设x-1=a,x-2=b,再根据代入得到,进而求出x.(1)解:∵x+y=8,∴,即,又∵,∴2xy=24,∴xy=12;(2)解:=16-2×5=6,故答案为:6;(3)解:由题意得(x-1)(x-2)=12,设x-1=a,x-2=b,则ab=12, ∴a-b=(x-1)-(x-2)=1,又∵,∴,∴,∴2x-3=±7,∴x=5或x=-2(舍).4、,19【解析】【分析】根据完全平方公式和平方差公式,把代数式去括号,合并同类项,从而将整式化为最简形式,然后把a、b的值代入即可.【详解】解:原式当,时,原式【点睛】本题考查了整式的化简求值,掌握乘法公式是解题的关键.5、【解析】【分析】原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【详解】解:(﹣3a2)3+(4a3)2﹣a2•a4===【点睛】本题主要考查了幂的乘方与积的乘方运算,熟练掌握运算法则是解答本题的关键.
相关试卷
这是一份2020-2021学年第八章 整式乘法综合与测试达标测试,共15页。试卷主要包含了下列计算正确的是,下列计算结果正确的是,下列计算中,正确的是,计算 等于等内容,欢迎下载使用。
这是一份数学七年级下册第八章 整式乘法综合与测试课时训练,共18页。试卷主要包含了已知,,c=,计算得,计算的结果,若的结果中不含项,则的值为等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试课后练习题,共15页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。