初中数学第八章 整式乘法综合与测试课后复习题
展开
这是一份初中数学第八章 整式乘法综合与测试课后复习题,共17页。试卷主要包含了纳米,下列计算正确的是.,下列计算结果正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、 “一带一路”建设将促进我国与世界一些国家的互利合作,“一带一路”地区复盖总人口约为4400000000人,这个数用科学记数法表示为( )A.4.4×109 B.44×108 C.0.44×1010 D.440×1072、下列计算中,正确的是( )A.a2+a3=a5 B.a•a=2a C.a•3a2=3a3 D.2a3﹣a=2a23、电影《攀登者》中有句台词:我们自己的山,自己要登上去,让全世界看到中国人.“地球之巅”正在人类努力和科技进步下逐渐揭开神秘面纱.2020年12月8日,中尼两国领导人共同宣布珠穆朗玛峰最新高程——8848.86米.这也意味着,15年前测量的8844.43米珠峰“身高”成为历史.则8848.86用科学记数法表示是( )A. B. C. D.4、纳米(nm)是非常小的长度单位,.1nm用科学记数法表示为( )A. B. C. D.5、下列计算正确的是( ).A. B. C. D.6、如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A. B.C. D.7、如果多项式 x2  mx  4 恰好是某个整式的平方,那么 m 的值为( )A.2 B.-2 C.±2 D.±48、下列计算结果正确的是( )A.a+a2=a3 B.2a6÷a2=2a3C.2a2•3a3=6a6 D.(2a3)2=4a69、地球上的陆地面积约为148000000平方千米,148000000用科学记数法表示为( )A. B. C. D.10、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、今年“五一”小长假铁路上海站迎来客流出行高峰,四天共计发送旅客逾1340000人次,1340000用科学记数法表示为 ________(保留3个有效数字).2、从南京市统计局获悉,到2021年底,南京市的常住人口达到931.46万人,该数据用科学记数法可以表示为__________人.3、用科学记数法表示:__.4、直接写出计算结果:(1)=____;(2)____;(3)=____;(4)102×98=____.5、在有理数范围内定义一个新的运算法则“*”;当a≥b时,a*b=ab;当a<b时,a*b=ab.根据这个法则,方程4*(4*x)=256的解是x=_________.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中,.2、数学课上,王老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1: ;方法2: ;(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 ;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,(a﹣b)2=13,求ab的值;②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.3、计解:.4、计算:.5、已知a+b=5,ab=﹣2.求下列代数式的值:(1)a2+b2;(2)2a2﹣3ab+2b2. -参考答案-一、单选题1、A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:4400000000=4.4×109.故选:A.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、C【解析】【分析】根据整式的加减及幂的运算法则即可依次判断.【详解】A. a2+a3不能计算,故错误; B. a•a=a2,故错误;C. a•3a2=3a3,正确;D. 2a3﹣a=2a2不能计算,故错误;故选C.【点睛】此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.3、B【解析】【分析】对于一个绝对值较大的数,用科学记数法写成a×10n的形式,其中1≤|a|<10,n是比原整数位数少1的数.【详解】解:8848.86=,故选B.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、C【解析】【分析】根据科学记数法的特点即可求解.【详解】解:.故选:C【点睛】本题考查了用科学记数法表示绝对值小于1的数,绝对值小于1的数用科学记数法可以写为的形式,其中1≤|a|<10,n为正整数,n的值为从第一个不为0的数向左数所有0的个数,熟知科学记数法的形式并准确确定a、n的值是解题关键.5、C【解析】【分析】将各式分别计算求解即可.【详解】解:A中,错误,故不符合要求;B中,错误,故不符合要求;C中,正确,故符合要求;D中,错误,故不符合要求;故选C.【点睛】本题考查了幂的乘方,同底数幂的乘法与除法,整式的加法等知识.解题的关键在于正确的运算.6、A【解析】【分析】如图,两个正方形面积的差,通过将阴影部分面积转移,构造一个长为,宽为的长方形,相同的面积用不同的表达式表示,从而可推导验证乘法公式中的平方差公式.【详解】解:如图,将大正方形的一边延长到,另一边长表示成的形式 变化前后面积相等由题意可知长方形面积为大正方形减去小正方形后的面积为故有故选A.【点睛】本题主要考察了平方差公式.解题的关键在于对长方形的构造.7、D【解析】【分析】根据平方项确定是完全平方公式,把公式展开,利用一次项系数相等确定m的值即可.【详解】解:∵x2  mx  4=(x±2)2=x2±4x+4,∴m=±4.故选D.【点睛】本题考查完全平方公式,掌握公式的特征是解题关键.8、D【解析】【分析】根据合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方法则逐项分析即可.【详解】解:A. a与a2不是同类项,不能合并,故不正确;B. 2a6÷a2=2a4,故不正确;C. 2a2•3a3=6a5,故不正确;D. (2a3)2=4a6,正确;故选D.【点睛】本题考查了合并同类项,同底数幂的除法,单项式乘以单项式,积的乘方运算,熟练掌握运算法则是解答本题的关键.9、B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:148000000用科学记数法表示为:148000000=,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:641200用科学记数法表示为:641200=,故选择B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题1、1.34×106【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1340000人次,用科学记数法表示为 1.34×106人次,故答案为:1.34×106.【点睛】此题考查科学记数法,注意n的值的确定方法,当原数大于10时,n等于原数的整数数位减1,按此方法即可正确求解.2、【解析】【分析】先确定a值,小数点点在数字9的后面即可,确定底数10 的指数,写成规定的表达方式即可.【详解】∵931.46万人=人,故答案为:.【点睛】本题考查了大数的科学记数法,熟练掌握科学记数法的基本要领是解题的关键.3、【解析】【分析】科学记数法的表示形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.据此求解即可得.【详解】解:.故答案为:.【点睛】本题考查的是用科学记数法表示绝对值大于1的数,熟练掌握变换方法是解题关键.4、 -12 -1 ax 9996【解析】【分析】(1)先乘方,再加减即可;(2)逆用积的乘方法则进行计算;(3)运用幂的乘方法则,同底数幂的乘除法法则以及积的乘方法则计算即可;(4)运用平方差公式计算即可.【详解】解:(1)=﹣1+(﹣10)﹣1=﹣1﹣10﹣1=﹣12.故答案为:﹣12.(2)=()101×()101()101=﹣()101=﹣1.故答案为:﹣1.(3)=a2x﹣2•ax+1÷a2x﹣1=a2x﹣2+x+1﹣(2x﹣1)=ax.故答案为:ax.(4)102×98=(100+2)×(100﹣2)=100²﹣2²=9996.故答案为:9996.【点睛】本题考查了实数的运算,平方差公式,同底数幂的乘除法,幂的乘方与积的乘方,零指数幂,负整数指数幂,熟练掌握各运算法则是解题关键.5、1或3或16【解析】【分析】根据运算法则当a≥b时,a*b=ab;当a<b时,a*b=ab,分类讨论4与x的大小关系求解.【详解】解:由题意得:①当x≤4时,4*(4*x)=4*(4x),当4≥4x时,4*(4x)==256=,解得x=1;当4<4x时,4*(4x)=4x+1=256=,解得x=3;②当x>4时,4*(4*x)=4*(4x)=16x=256,解得x=16.故答案为:1或3或16.【点睛】本题考查新定义计算,解题关键是严格按照题干所给运算法则分类讨论运算.三、解答题1、,-4【解析】【分析】用乘法公式及单项式乘多项式的法则计算,再合并同类项即可化简;再所给的值代入化简后的式子中即可求得值.【详解】原式当,时,原式【点睛】本题是化简求值题,考查了整式的乘法及求代数式的值,熟练运用乘法公式及单项式乘多项式是关键.2、 (1);(2)(3)①;②-2【解析】【分析】(1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;(2)由(1)直接可得关系式;(3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.(1)方法一:∵大正方形的边长为(a+b),∴S=(a+b)2;方法二:大正方形是由2个长方形,2个小正方形拼成,∴S=b2+ab+ab+a2=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由(1)可得(a+b)2=a2+b2+2ab;故答案为:(a+b)2=a2+b2+2ab;(3)①∵(a-b)2=a2+b2-2ab=13①,(a+b)2=a2+b2+2ab=25②,由①-②得,-4ab=-12,解得:ab=3;②设2021-a=x,a-2020=y,∴x+y=1,∵(2021-a)2+(a-2020)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2=1,∴2xy=1-(x2+y2)=1-5=-4,解得:xy=-2,∴(2021-a)(a-2020)=-2.【点睛】本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.3、【解析】【分析】把原式化为,然后根据平方差公式计算即可.【详解】解:原式.【点睛】此题考查的是平方差公式,掌握平方差公式的公式结构是解决此题关键.4、【解析】【分析】先计算负整数指数幂、零指数幂、乘方,再计算加减法即可得.【详解】解:原式.【点睛】本题考查了负整数指数幂、零指数幂等知识,熟练掌握各运算法则是解题关键.5、 (1)29;(2)64【解析】【分析】(1)利用已知得出(a+b)2=25,进而化简求出即可;(2)利用(1)中所求,进而求出即可.(1)解:(1)∵a+b=5,ab=﹣2,∴(a+b)2=25,则a2+b2+2×(﹣2)=25,故a2+b2=29;(2)(2)2a2﹣3ab+2b2=2(a2+b2)﹣3ab=2×29﹣3×(﹣2)=64.【点睛】本题考查了完全平方公式的应用,解题的关键是正确利用完全平方公式求出.
相关试卷
这是一份2020-2021学年第八章 整式乘法综合与测试课时训练,共17页。试卷主要包含了计算,下列计算正确的是,已知,,c=,已知是完全平方式,则的值为等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试随堂练习题,共16页。试卷主要包含了计算 等于,下列运算正确的是,计算正确的结果是,已知,,则的值为,下列各式中,不正确的是,在下列运算中,正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试同步训练题,共17页。试卷主要包含了在下列运算中,正确的是,纳米,下列运算正确的是,我国刑法规定,走私等内容,欢迎下载使用。