![精品试题冀教版七年级下册第六章二元一次方程组重点解析试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12718364/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版七年级下册第六章二元一次方程组重点解析试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12718364/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版七年级下册第六章二元一次方程组重点解析试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12718364/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试巩固练习
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试巩固练习,共19页。试卷主要包含了若是方程的解,则等于等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、下列方程组中,属于二元一次方程组的是( )A. B.C. D.2、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )A.48 B.52 C.58 D.643、若方程组的解为,则方程组的解为( )A. B.C. D.4、m为正整数,已知二元一次方程组有整数解则m2=( )A.4 B.1或4或16或25C.64 D.4或16或645、在下列各组数中,是方程组的解的是( )A. B. C. D.6、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )A.1 B.﹣1 C.2 D.﹣37、若是方程的解,则等于( )A. B. C. D.8、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )A.1,0 B.0,﹣1 C.2,1 D.2,﹣39、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有人,辆车,可列方程组为( )A. B. C. D.10、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )A. B.C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、新春佳节享团圆,吉祥如意在虎年!新年将至,某超市第一周销售吉祥、如意、团圆三种年货礼包的数量之比为,吉祥、如意、团圆三种年货礼包的单价之比为.第二周由于人工成本的增加,超市管理人员把如意礼包的单价在第一周的基础上上调,吉祥、团圆礼包的单价保持不变,预计第二周三种年货礼包的销售总额比第一周有所增加,其中团圆礼包增加的销售额占第二周总销售额,如意礼包和团圆礼包的销售额之比是,三种礼包的数量之和比第一周增加,则团圆礼包第一周与第二周的数量之比为_____________.2、已知是方程组的解,则计算的值是______.3、为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文,,,对应密文,,,.例如,明文1,2,3,4对应密文5,7,14,16.当接收方收到密文9,9,24,28时,则解密得到的明文为 __.4、将方程x+3y=8变形为用含y的式子表示x,那么x=_______.5、含有两个未知数,并且所含未知数的项的次数都是1的方程,叫做____.判断一个方程是否为二元一次方程:(1)二元一次方程的条件:①____方程;②只含____个未知数;③两个未知数系数都不为____;④含有未知数的项的次数都是____.(2)二元一次方程的一般形式:ax+by=c(a≠0,b≠0).三、解答题(5小题,每小题10分,共计50分)1、列方程组解应用题:全自动红外体温检测仪是一种非接触式人体测温系统,通过人体温度补偿、温度自动校正等技术实现准确、快速的测温工作,具备人体非接触测温、高温报警等功能.为了提高体温检测效率,某医院引进了一批全自动红外体温检测仪.通过一段时间使用发现,全自动红外体温检测仪的平均测温用时比人工测温快2秒,全自动红外体温检测仪检测60个人的体温的时间比人工检测40个人的体温的时间还少50秒,请计算全自动红外体温检测仪和人工测量测温的平均时间分别是多少秒?2、六年级学生若干人报名参加课外活动小组,男女生人数之比为4:3,后来又报了15名女生,这时女生人数恰好是男生人数的2倍,求最初报名时男生与女生各有多少人?3、以“花开中国梦”为主题的第十届中国花卉博览会于2021年5月21日至7月2日在上海市崇明区东平国家森林公园举办,本届花博会的门票分为平日票、指定日票等种类,其中平日票每张120元,指定日票每张180元,小明计划用2100元购买平日票和指定日票共15张.(1)求小明计划购买平日票和指定日票各几张?(2)为了鼓励大家提前购买,主办方决定,凡是在5月21日前购票的,平日票和指定日票都可以享受低于原价的预售价.小明决定按照预售价提前购票,在购票时小明发现:如果不改变原计划购买的门票种类及相应的张数,总金额可以节约300元;如果不改变原计划购票的总金额,那么可以购买5张平日票和10张指定日票,求平日票和指定日票的预售价分别是多少元?4、解方程组:.5、解方程组:. -参考答案-一、单选题1、C【解析】【分析】根据二元一次方程组的基本形式及特点进行判断,即:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.【详解】解:、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意、该方程组中的第一个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;、该方程组符合二元一次方程组的定义,故本选项符合题意;、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;故选:.【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.2、B【解析】【分析】设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.【详解】设小长方形的宽为,长为,由图可得:,得:,把代入①得:,大长方形的宽为:,大长方形的面积为:,7个小长方形的面积为:,阴影部分的面积为:.故选:B.【点睛】本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.3、B【解析】【分析】由整体思想可得,求出x、y即可.【详解】解:∵方程组的解为,∴方程组的解,∴;故选:B.【点睛】本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.4、D【解析】【分析】把m看作已知数表示出方程组的解,由方程组的解为整数解确定出m的值,代入原式计算即可求出值.【详解】解:,①-②得:(m-3)x=10,解得:x=,把x=代入②得:y=,由方程组为整数解,得到m-3=±1,m-3=±5,解得:m=4,2,-2,8,由m为正整数,得到m=4,2,8则=4或16或64,故选:D.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5、D【解析】【分析】根据二元一次方程组的解可把选项逐一代入求解即可.【详解】解:∵∴把代入方程①得:,代入②得:,所以该解不是方程组的解,故A选项不符合题意;把代入方程①得:,代入②得:,所以该解不是方程组的解,故B选项不符合题意;把代入方程①得:,代入②得:,所以该解不是方程组的解,故C选项不符合题意;把代入方程①得:,代入②得:,所以该解是方程组的解,故D选项符合题意;故选D.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.6、C【解析】【分析】先求出方程组的解,由方程组的解为正整数分析得出a值.【详解】解:解方程组,得, ∵方程组的解为正整数,∴a=0时,;a=2时,, ∴满足条件的所有整数a的和为0+2=2.故选:C.【点睛】此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.7、B【解析】【分析】把代入到方程中得到关于k的方程,解方程即可得到答案.【详解】解:∵是方程的解,∴,∴,故选B.【点睛】本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.8、C【解析】【分析】根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.【详解】解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,∴ ,解得:. 故选:C【点睛】本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.9、C【解析】【分析】根据题意,找到关于x、y的两组等式关系,即可列出对应的二元一次方程组.【详解】解:由每三人共乘一车,最终剩余2辆车可得:.由每2人共乘一车,最终剩余9个人无车可乘可得:.该二元一次方程组为:.故选:C.【点睛】本题主要是考查了列二元一次方程组,熟练根据题意找到等式关系,这是求解该题的关键.10、B【解析】【分析】设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.【详解】解:设学生人数为x,长凳数为y,由题意得:,故选B.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.二、填空题1、4:5【解析】【分析】设某超市第一周销售吉祥、如意、团圆三种年货礼包的数量为3a,a,4a,三种年货礼包的单价为b,5b,2b,则第一周销售额可得;设第二周如意年货礼包的销售数量为y,由于第二周礼包的单价在第一周的基础上上调,所以第二周礼包的单价为6y,销售额为6by,则团圆礼包第二周销售额为8by,利用已知条件列出方程求解即可【详解】解:设某超市第一周销售吉祥、如意、团圆三种年货礼包的数量为3a,a,4a,三种年货礼包的单价为b,5b,2b,则第二周三种年货的售价为:b,5b×1.2=6b,2b;设第二周三种年货的销量分别为x,y,z,∵如意礼包和团圆礼包的销售额之比是,∴ ∴ 第二周团圆包增加的销售额为: ∵团圆礼包增加的销售额占第二周总销售额,∴ ∴ ∵三种礼包的数量之和比第一周增加,∴ ∴ ∴ ∴团圆礼包第一周与第二周的数量之比为 故答案为:4:5【点睛】本题考查三元一次方程的应用;理解题意,能够通过所给的量之间的关系列出正确的方程是解题的关键.2、1【解析】【分析】把代入求出m和n的值,然后代入计算即可.【详解】解:把代入,得,①+②,得2m=6,∴m=3,把m=3代入②,得3+2n=-1,∴n=-2,∴=3-2=1,故答案为:1.【点睛】本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.3、5,2,5,7【解析】【分析】设解密得到的明文为,,,,加密规则得出方程组,求出,,,的值即可.【详解】解:设明文为,,,,由题意得:,解得:,则得到的明文为5,2,5,7.故答案为:5,2,5,7.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.4、8﹣3y【解析】【分析】利用等式的性质求解.【详解】解:x+3y=8,x=8﹣3y.故答案为:8﹣3y【点睛】本题主要考查了二元一次方程的解法,熟练掌握二元一次方程组的解法——加减消元法,代入消元法是解题的关键.5、 二元一次方程 整式 两 0 1【解析】略三、解答题1、全自动红外体温检测仪和人工测量测温的平均时间分别是秒和秒【解析】【分析】设全自动红外体温检测仪的平均测温用时为秒,人工测量的平均测温用时为秒,根据“全自动红外体温检测仪检测60个人的体温的时间比人工检测40个人的体温的时间还少50秒”列出方程组,解方程求组解即可【详解】解:设全自动红外体温检测仪的平均测温用时为秒,则人工测量的平均测温用时为秒,则解得答:全自动红外体温检测仪和人工测量测温的平均时间分别是秒和秒.【点睛】本题考查了二元一次方程组的应用,根据题意列出等量关系是解题的关键.2、最初报名时男生有12人,女生有9人.【解析】【分析】设最初报名时女生有x人,男生有y人,由题意:男女生人数之比为4:3,后来又报了15名女生,这时女生人数恰好是男生人数的2倍,列出方程组,解之即可.【详解】解:设最初报名时女生有x人,男生有y人,依题意,得:,解得:,答:最初报名时男生有12人,女生有9人.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3、 (1)小明计划购买平日票为10张,指定日票为5张(2)平日票的预售价为100元,指定日票的预售价为160元【解析】【分析】(1)设小明计划购买平日票为张,指定日票为张,由题意:平日票每张120元,指定日票每张180元,小明计划用2100元购买平日票和指定日票共15张.列出方程组,解方程组即可;(2)设平日票的预售价为元,指定日票的预售价为元,由题意:不改变原计划购买的门票种类及相应的张数,总金额可以节约300元;不改变原计划购票的总金额,那么可以购买5张平日票和10张指定日票,列出方程组,解方程组即可.(1)解:设小明计划购买平日票为张,指定日票为张,由题意得:,解得:,答:小明计划购买平日票为10张,指定日票为5张;(2)解:设平日票的预售价为元,指定日票的预售价为元,由题意得:,解得:,答:平日票的预售价为100元,指定日票的预售价为160元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,解题的关键是正确列出二元一次方程组.4、【解析】【分析】由①②相加消去y,与③组成关于x、 z的二元-次方程组, 进一步解二元一次方程组, 求得答案即可.【详解】解:①+②得,3x+z=6④③④组成二元一次方程组得,解得,代入①得,y=2,∴原方程组的解为.【点睛】本题考查三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解方程组较简单.5、【解析】【详解】解:,①②,得,解得:,把代入①,得,解得:,所以方程组的解是.【点睛】本题考查了解二元一次方程组,解题的关键是能把二元一次方程组转化成一元一次方程.
相关试卷
这是一份2021学年第六章 二元一次方程组综合与测试课后作业题,共21页。试卷主要包含了若关于x等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试一课一练,共18页。试卷主要包含了若关于x等内容,欢迎下载使用。
这是一份2020-2021学年第六章 二元一次方程组综合与测试一课一练,共21页。试卷主要包含了已知a,b满足方程组则的值为,已知方程组的解满足,则的值为等内容,欢迎下载使用。