冀教版七年级下册第六章 二元一次方程组综合与测试练习
展开冀教版七年级下册第六章二元一次方程组章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?”设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是( )
A. B.
C. D.
2、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺!设绳索长x尺,竿长y尺,则符合题意的方程组是( )
A. B. C. D.
3、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )
A. B.
C. D.
4、佳佳坐在匀速行驶的车上,将每隔一段时间看到的里程碑上的数描述如下:
时刻 | 12:00 | 13:00 | 14:00 |
里程碑上的数 | 是一个两位数,数字之和为7 | 十位数字和个位数字与12:00时看到的刚好相反 | 比12:00看到的两位数中间多了个0 |
则12:00时看到的两位数是( )A.16 B.25 C.34 D.52
5、下列各式中是二元一次方程的是( )
A. B. C. D.
6、在某场CBA比赛中,某位运动员的技术统计如下表所示:
技术 | 上场时间(分钟) | 出手投篮(次) | 投中(次) | 罚球得分(分) | 篮板(个) | 防攻(次) | 个人总得分(分) |
数据 | 38 | 27 | 11 | 6 | 3 | 4 | 33 |
注:①表中出手投篮次数和投中次数均不包括罚球;
②总得分=两分球得分+三分球得分+罚球得分.
根据以上信息,本场比赛中该运动员投中两分球和三分球各( )个.
A.5,6 B.6,5 C.4,7 D.7,4
7、已知方程组的解满足,则的值为( )
A.7 B. C.1 D.
8、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )
A.1个 B.2个 C.3个 D.4个
9、有下列方程组:①;②;③;④ ;⑤,其中二元一次方程组有( )
A.1个 B.2个 C.3个 D.4个
10、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )
A. B.
C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,且第一天比第二天少走2km,设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,可列方程组______.
2、已知x、y满足方程组,则的值为__________.
3、二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化成____________方程了,于是可以求出其中的一个未知数,然后再求另一个未知数.这种将未知数的个数由多转化少、逐一解决的想法,叫做____________思想.
4、为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文,,,对应密文,,,.例如,明文1,2,3,4对应密文5,7,14,16.当接收方收到密文9,9,24,28时,则解密得到的明文为 __.
5、关于x、y二元一次方程组的解满足,则k的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分:(水价计费=自来水销售费用+污水处理费用)
自来水销售价格 | 污水处理价格 (单价:元/吨) | 每户每月用水量 (单价:元/吨) |
17吨及以下 | a | 0.80 |
超过17吨不超过 30吨的部分 | b | 0.80 |
超过30吨的部分 | 6.00 | 0.80 |
已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.
(1)求a,b的值.
(2)6月份小王家用水32吨,应交水费多少元.
(3)若林芳家7月份缴水费303元,她家用水多少吨?
2、六一前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需多少元.
3、养牛场原有30头大牛和15头小牛,1天约需用饲料675 kg;一周后又购进12头大牛和5头小牛,这时1天约需用饲料940 kg.饲养员李大叔估计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7 ~8 kg.你能否通过计算检验他的估计?
解:设平均每头大牛和每头小牛1天各需用饲料为xkg和ykg;
根据题意列方程:,
解得:___________
所以,每只大牛1天约需饲料20kg,每只小牛1天约需饲料5kg,饲养员李大叔对大牛的食量估计正确,对小牛的食量估计偏高.
4、已知方程组的解、的值之和等于2,求的值.
5、某校艺术节表演了30个节目,其中歌曲类节目比舞蹈类节目的3倍少2个,问歌唱类节目和舞蹈类节目各有多少个.
-参考答案-
一、单选题
1、B
【解析】
【分析】
设他买了x亩好田,y亩坏田,根据总价=单价×数量,结合购买好田坏田一共是100亩且共花费了10000元,即可得出关于x,y的二元一次方程组,此题得解.
【详解】
解:设他买了x亩好田,y亩坏田,
∵共买好、坏田1顷(1顷=100亩).
∴x+y=100;
∵今有好田1亩,价值300钱;坏田7亩,价值500钱,购买100亩田共花费10000钱,
∴300x+y=10000.
联立两方程组成方程组得:.
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
2、A
【解析】
【分析】
根据题意可列出等量关系:绳长=竿长+5尺,竿长=绳长的一半+5尺,据此列方程即可.
【详解】
解:设绳索长x尺,竿长y尺,则
故选:A.
【点睛】
本题考查由实际问题抽象出二元一次方程组,关键是正确理解题意,找出等量关系,由等量关系列方程.
3、C
【解析】
【分析】
根据题意,x+y=40,5x+10y=275,判断即可.
【详解】
根据题意,得x+y=40,5x+10y=275,
∴符合题意的方程组为,
故选C.
【点睛】
本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.
4、A
【解析】
【分析】
设小明12:00看到的两位数,十位数为x,个位数为y,根据车的速度不变和12:00时看到的两位数字之和为7,即可列出二元一次方程组,解方程组即可求解.
【详解】
设小明12:00看到的两位数,十位数为x,个位数为y,
由题意列方程组得:,
解得:,
∴12:00时看到的两位数是16.
故选:A.
【点睛】
本题考查二元一次方程组的应用,掌握里程碑上的数的表示是解题的关键.
5、B
【解析】
【分析】
根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;
【详解】
中x的次数为2,故A不符合题意;
是二元一次方程,故B符合题意;
中不是整式,故C不符合题意;
中y的次数为2,故D不符合题意;
故选B.
【点睛】
本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.
6、B
【解析】
【分析】
设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
解:设本场比赛中该运动员投中两分球x个,三分球y个,
根据题意得:,
解得:.
答:设本场比赛中该运动员投中两分球6个,三分球5个.
故选:B.
【点睛】
本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.
7、D
【解析】
【分析】
①+②得出x+y的值,代入x+y=1中即可求出k的值.
【详解】
解:
①+②得:3x+3y=4+k,
∴,
∵,
∴,
∴,
解得:,
故选:D
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
8、A
【解析】
【分析】
含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.
【详解】
解:①x+y=6是二元一次方程;
②x(x+y)=2,即不是二元一次方程;
③3x-y=z+1是三元一次方程;
④m+=7不是二元一次方程;
故符合题意的有:①,
故选A
【点睛】
本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.
9、B
【解析】
略
10、B
【解析】
【分析】
设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.
【详解】
解:设甲持钱x,乙持钱y,
根据题意,得:,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
二、填空题
1、
【解析】
【分析】
相等关系有两个:两天行军的路程之和为98km,第一天行军的路程加上2km等于第二天的行军路程,再列方程组即可.
【详解】
解:设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,
则
故答案为:
【点睛】
本题考查的是二元一次方程组的应用,“确定相等关系列方程组”是解本题的关键.
2、1
【解析】
【分析】
利用整体思想直接用方程①-②即可得结果.
【详解】
解:,
①-②得,4x+4y=4,
x+y=1,
故答案为:1.
【点睛】
本题考查了二元一次方程组的解,解二元一次方程组,解决本题的关键是掌握整体思想.
3、 一元一次 消元
【解析】
略
4、5,2,5,7
【解析】
【分析】
设解密得到的明文为,,,,加密规则得出方程组,求出,,,的值即可.
【详解】
解:设明文为,,,,
由题意得:,
解得:,
则得到的明文为5,2,5,7.
故答案为:5,2,5,7.
【点睛】
本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
5、8
【解析】
【分析】
转化方程组,求得解后,代入求值即可.
【详解】
∵,
解得,
∴,
∴k=8,
故答案为:8.
【点睛】
本题考查了二元一次方程组的解法,熟练构造新方程组是解题的关键.
三、解答题
1、 (1)
(2)129.6元
(3)57.5吨
【解析】
【分析】
(1)根据“4月份用水20吨,交水费66元;5月份用水25吨,交水费91元”,列出方程组,即可求解;
(2)用(30-17)×4.2加上17×2.2再加上超过30吨的部分的污水处理的费用再加上自来水销售费用,即可求解;
(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,然后设林芳家七月份用水x吨,根据题意列出方程,即可求解.
(1)
解:(1)由题意得: ,
解得 ;
(2)
(2)(30-17)×4.2+17×2.2+(32-30)×6+32×0.8
=129.6(元).
答:当月交水费129.6元;
(3)
(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,
设林芳家七月份用水x吨,
则(30-17)×4.2+17×2.2+(x-30)×6+x×0.8=303(元),
6.8x=391,
解得:x=57.5,
即七月份林芳家用水57.5吨.
【点睛】
本题主要考查了二元一次方程组和一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
2、1套文具和1套图书需48元
【解析】
【分析】
设1套文具x元,1套图书y元,根据1套文具和3套图书需104元及3套文具和2套图书需116元,即可得出关于x、y的二元一次方程组,解方程即可解答.
【详解】
解:本题的等量关系:
1套文具花费+3套图书花费=104元.3套文具花费+2套图书花费=116元.
设一套文具x元,一套图书y元,由题意,得 :
,
解得: ,
∴x+y=48(元).
答:1套文具和1套图书需48元.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
3、
【解析】
略
4、k=4
【解析】
【分析】
由原方程组中两个方程相减可得 与结合成新的方程组,求解的值,再求解即可.
【详解】
解: 方程组,
①②得:③,
又由题意得:④,
由③和④组成新的方程组,
解得:,
.
【点睛】
本题考查的是解二元一次方程组,结合已知条件熟练的构建新的二元一次方程组是解本题的关键.
5、歌唱类节目和舞蹈类节目分别有22个和8个
【解析】
【分析】
由题意,歌唱类节目+舞蹈类节目=30个,歌曲类节目=3倍舞蹈类节目-2个,设未知数列方程组求解.
【详解】
解:设歌唱类节目x个,舞蹈类节目y个,
由题意,得
,
解得: ,
答:歌唱类节目和舞蹈类节目分别有22个和8个.
【点睛】
本题考查了二元一次方程组的应用,正确找到等量关系,并以此列出方程是解题的关键.
2020-2021学年第二十章 函数综合与测试一课一练: 这是一份2020-2021学年第二十章 函数综合与测试一课一练,共24页。试卷主要包含了下列图像中表示是的函数的有几个,函数中,自变量x的取值范围是等内容,欢迎下载使用。
初中冀教版第六章 二元一次方程组综合与测试一课一练: 这是一份初中冀教版第六章 二元一次方程组综合与测试一课一练,共18页。试卷主要包含了若是方程的解,则等于,二元一次方程组的解是,已知关于x等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试测试题: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试测试题,共20页。试卷主要包含了某学校体育有场的环形跑道长,甲等内容,欢迎下载使用。