冀教版七年级下册第六章 二元一次方程组综合与测试一课一练
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试一课一练,共20页。试卷主要包含了若是方程组的解,则的值为等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如果关于x和y的二元一次方程组的解中的x与y的值相等,则a的值为( )A.-2 B.-1 C.2 D.12、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )A. B.C. D.3、下列方程是二元一次方程的是( )A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=14、若是方程组的解,则的值为( )A.16 B.-1 C.-16 D.15、方程,,,,中是二元一次方程的有( )个A.1 B.2 C.3 D.46、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )A. B. C. D.7、若为都是方程ax+by=1的解,则a+b的值是( )A.0 B.1 C.2 D.38、现有一批脐橙运往外地销售,A型车载满一次可运3吨,B型车载满一次可运4吨,现有脐橙31吨,计划同时租用A,B两种车型,一次运完且恰好每辆车都载满脐橙,租车方案共有( )A.2种 B.3种 C.4种 D.5种9、下列方程中,是二元一次方程组的是( )A. B. C. D.10、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为( ).A. B.C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、将变形成用含的式子表示,那么_______.2、将一张面值50元的人民币,兑换成5元或10元的零钱,两种人民币都要有,那么共有_____种兑换方案.3、有甲乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍,若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求这两个两位数.解:设甲数为x,乙数为y.依题意,得 解此方程组,得___________所以,甲数是24,乙数是124、5、红星体育用品厂生产了一种体育用品礼品套装,已知该套装一套包含2个足球,4个篮球,6副羽毛球.一爱心企业向该厂订购了一批礼品套装,捐赠给希望小学,以丰富师生的课外活动,他们需要厂家在10天内生产完该套装并交货.红星体育用品厂将工人分为A、B、C三个组,分别生产足球、篮球、羽毛球,他们于某天零点开始工作,每天24小时轮班连续工作.(假设每组每小时工作效率不变).若干天后的零点A组完成任务,再过几天后(不小于1天)的中午12点,B组完成任务,再过几天(不小于1天)后的下午6点(即当天18点),C组完成任务.已知A、B、C三个组每天完成的任务数分别是240个,320个,320副,则该爱心企业一共订购了__________套体育用品礼品套装.三、解答题(5小题,每小题10分,共计50分)1、解方程组:(1)(2)2、解方程组:(1)(2)3、甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司人均捐款120元,乙公司人均捐款100元.如图是甲、乙两公司员工的一段对话.(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买、两种防疫物资,种防疫物资每箱1500元,种防疫物资每箱1200元.若购买种防疫物资不少于20箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).4、例3.林芳、向民、艳君三位同学去商店买文具用品,林芳说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”向民说:“我买了2支水笔,3本笔记本,10本练习本共用了20元,”艳君说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.5、(1)解方程3(x+1)=8x+6;(2)解方程组. -参考答案-一、单选题1、C【解析】【分析】先根据x=y,把原方程变成,然后求出x的值,代入求出a的值即可.【详解】解∵x=y,∴原方程组可变形为,解方程①得x=1,将代入②得,解得,故选C.【点睛】本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.2、B【解析】【分析】设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可【详解】解:设馒头每个元,包子每个元,根据题意得故选B【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.3、C【解析】【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.4、C【解析】【分析】把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.【详解】解:把代入方程组得,两式相加得;两式相差得:,∴,故选C.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5、A【解析】【详解】解:方程是二元一次方程,中的的未知数的次数,不是二元一次方程,含有三个未知数,不是二元一次方程,是代数式,不是二元一次方程,中的的未知数的次数是2,不是二元一次方程,综上, 二元一次方程的个数是1个,故选:A.【点睛】本题考查了二元一次方程,熟记二元一次方程的定义(含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.6、A【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.【详解】解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:.故选:A.【点睛】此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.7、C【解析】【分析】把为代入ax+by=1,建立方程组,再解方程组即可.【详解】解: 为都是方程ax+by=1的解, 解②得: 把代入①得: 故选C【点睛】本题考查的是二元一次方程的解,二元一次方程组的解法,掌握“利用方程的解建立新的二元一次方程”是解本题的关键.8、B【解析】【分析】设租A型车x辆,租B型车y辆,根据题意列方程得,正整数解即可.【详解】解:设租A型车x辆,租B型车y辆,根据题意列方程得,∴,∵均为正整数,∴是4的倍数,小于31的4的倍数有28,24,20,16,12,8,4,∴=28,解得x=1,,∴=24,解得,,∴=20,解得,∴=16,解得x=5,,∴=12,解得,∴=8,解得,∴=4,解得x=9,,∴租车方案有三种分别为:租A型车1辆,租B型车7辆或租A型车5辆,租B型车4辆或租A型车9辆,租B型车1辆.故选择B.【点睛】本题考查二元一次方程的正整数解,掌握应用二元一次方程解应用题,利用二元一次方程的正整数解解决方案设计问题是解题关键.9、B【解析】【分析】根据二元一次方程组的定义解答.【详解】解:A中含有两个未知数,含未知数的项的最高次数为2,故不符合定义;B符合定义,故是二元一次方程组;C中含有分式,故不符合定义;D含有三个未知数,故不符合定义;故选:B.【点睛】此题考查了二元一次方程组定义:含有两个未知数,且含有未知数的项的最高次数为2的整式方程是二元一次方程组,熟记定义是解题的关键.10、B【解析】【分析】设绳子长x尺,长木长y尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x,y的二元一次方程组.【详解】解:设绳子长x尺,长木长y尺,依题意,得:,故选:B.【点睛】本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题1、【解析】【分析】先移项,再将系数化为1,即可求解.【详解】解:,移项,得:, .故答案为:【点睛】本题主要考查了等式的基本性质,熟练掌握等式两边同时加上(或减去)同一个数(或整式),等式仍然成立;等式两边同时乘或除以同一个不为0的数(或整式),等式仍然成立是解题的关键.2、4【解析】【分析】设兑换成面值5元的人民币x张,面值10元的人民币y张,根据兑换成零钱的总价值为50元,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出共有4种兑换方案.【详解】设兑换成面值5元的人民币x张,面值10元的人民币y张,依题意得:5x+10y=50,∴x=10﹣2y.又∵x,y均为正整数,∴或或或,∴共有4种兑换方案.故答案为:4.【点睛】本题考查了列二元一次方程组,利用二元一次方程组的解进行方案设计的方法,优化方案问题先要列举出所有可能的方案,再按题目要求分别求出每种方案的具体结果.3、【解析】略4、2【解析】【分析】将代入二元一次方程可得一个关于的方程,解方程即可得.【详解】解:由题意,将代入方程得:,解得,5、360【解析】【分析】由套装中包含足球、篮球、羽毛球的数量可得出:生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.设A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,根据三种体育用品数量之间的关系,即可得出关于x,y,z的三元一次方程组,解之可得出2z=3y,结合y,z均为一位正整数可得出z为3的倍数,分别代入z=3,z=6,z=9求出x值,再结合该套装一套包含2个足球即可求出该企业订购体育用品礼品套装的数量.【详解】解:∵该套装一套包含2个足球,4个篮球,6副羽毛球,∴生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.设A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,依题意得:,∴,∴2z=3y.又∵x,y,z均为一位正整数,∴z为3的倍数.当z=3时,x=,不合题意,舍去;当z=6时,x=3,此时y=4;当z=9时,x=,不合题意,舍去.∴该爱心企业订购体育用品礼品套装的数量为240×3÷2=360(套).故答案为:360.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.三、解答题1、 (1)(2)【解析】【分析】(1)用加法消元法求解;(2)用减法消元法求解.(1)∵①+②得:, ,将x=3代入①中得:, 得,∴原方程组的解是.(2)将方程组变形为,②,得③,③-①,得,把代入②,得.∴原方程组的解是.【点睛】本题考查了二元一次方程组的解法,根据题目特点,灵活选择解题方法是解题的关键.2、 (1)(2)【解析】【分析】用代入消元法或加减消元法解二元一次方程即可.(1)原方程可转化为,由①,得③,把③代入②,得,把代入①,得,故原方程组的解为.(2)原方程组可转化为,由①×4+②×5得:,解得,把代入②式得:,故原方程组的解为.【点睛】本题考查了解二元一次方程组,把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代人消元法,简称代入法.当二元一次方程组的两个方程中间一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.3、 (1)甲公司150人,乙公司180人(2)共有两种方案,①种物资购买8箱,种物资购买20箱;②种物资购买4箱,种物资购买25箱【解析】【分析】(1)设甲公司人,乙公司人,根据题意列出二元一次方程组,求解即可;(2)设种物资购买箱,种物资购买箱,根据题意列出二元一次方程,求出整数解即可.(1)解:设甲公司人,乙公司人,根据题意得:,解得:,答:甲公司150人,乙公司180人;(2)设种物资购买箱,种物资购买箱,由题意得:,整理得:,,且、是正整数,当时,;当时,;答:共有两种方案,①种物资购买8箱,种物资购买20箱;②种物资购买4箱,种物资购买25箱.【点睛】本题考查了二元一次方程组的应用,解题关键是理清题意,正确找到等量关系,列出二元一次方程组.4、笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.【解析】【分析】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,根据林芳、向民、艳君三个人的话可以建立三个方程,从而构成三元一次方程组,求出其解即可.【详解】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,由题意得 解得 答:笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时找准等量关系建立方程是关键.5、(1)x=;(2)【解析】【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)①×2+②得出13x=26,求出x,把x=2代入①求出y即可.【详解】解:(1)3(x+1)=8x+6,去括号,得3x+3=8x+6,移项,得3x-8x=6-3,合并同类项,得-5x=3,系数化成1,得x=;(2),①×2+②,得13x=26,解得:x=2,把x=2代入①,得10+y=7,解得:y=-3,所以方程组的解是.【点睛】本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.
相关试卷
这是一份数学七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共21页。试卷主要包含了《孙子算经》记载等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试单元测试随堂练习题,共18页。试卷主要包含了若是方程组的解,则的值为,方程x+y=6的正整数解有等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试达标测试,共18页。试卷主要包含了若方程组的解为,则方程组的解为,已知a,b满足方程组则的值为,用代入消元法解关于,已知是二元一次方程,则的值为,二元一次方程组的解是,下列方程是二元一次方程的是等内容,欢迎下载使用。