![2021-2022学年基础强化冀教版七年级数学下册第十一章 因式分解难点解析练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12719109/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版七年级数学下册第十一章 因式分解难点解析练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12719109/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版七年级数学下册第十一章 因式分解难点解析练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12719109/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
七年级下册第十一章 因式分解综合与测试课后测评
展开
这是一份七年级下册第十一章 因式分解综合与测试课后测评,共16页。试卷主要包含了下列因式分解正确的是,多项式分解因式的结果是,分解因式2a2等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列从左边到右边的变形,是因式分解的是( )A.(3﹣x)(3+x)=9﹣x2 B.x2+y2=(x+y)(x﹣y)C.x2﹣x=x(x﹣1) D.2yz﹣y2z+z=y(2z﹣yz)+z2、把代数式分解因式,正确的结果是( )A.-ab(ab+3b) B.-ab(ab+3b-1)C.-ab(ab-3b+1) D.-ab(ab-b-1)3、下列各式从左到右的变形属于因式分解的是( )A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3yC.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)4、下列多项式能使用平方差公式进行因式分解的是( )A. B. C. D.5、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )A.非负数 B.正数 C.负数 D.非正数6、下列因式分解正确的是( )A.a2+1=a(a+1) B.C.a2+a﹣5=(a﹣2)(a+3)+1 D.7、多项式分解因式的结果是( )A. B.C. D.8、下列各等式中,从左到右的变形是正确的因式分解的是( )A.2x•(x﹣y)=2x2﹣2xy B.(x+y)2﹣x2=y(2x+y)C.3mx2﹣2nx+x=x(3mx﹣2n) D.x2+3x﹣2=x(x+3)﹣29、分解因式2a2(x-y)+2b2(y-x)的结果是( )A.(2a2+2b2) (x-y) B.(2a2-2b2) (x-y)C.2(a2-b2) (x-y) D.2(a-b)(a+b)(x-y)10、下列等式从左到右的变形,属于因式分解的是( )A.(x+1)(x﹣1)=x2﹣1 B.x2﹣8x+16=(x﹣4)2C.x2﹣2x+1=x(x﹣1)+1 D.x2﹣4y2=(x+4y)(x﹣4y)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当x=___时,x2﹣2x+1取得最小值.2、已知x2+mx+16能用完全平方公式因式分解,则m的值为 ___.3、因式分解:-x+xy-y=________.4、若a,b都是有理数,且满足a2+b2+5=4a﹣2b,则(a+b)2021=_____.5、因式分解:5a2﹣45b2=_____.三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1)(2)(3)2、计算:(1)计算:(2a)3•b4÷4a3b2;(2)计算:(a﹣2b+1)2;(3)分解因式:(a﹣2b)2﹣(3a﹣2b)2.3、分解因式:4、完成下列各题:(1)计算:① ②(2)因式分解:① ②5、因式分解:(1)3a2﹣27;(2)m3﹣2m2+m. -参考答案-一、单选题1、C【解析】【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.【详解】解:A、(3﹣x)(3+x)=9﹣x2属于整式的乘法运算,不是因式分解,不符合题意;B、,原式错误,不符合题意;C、x2﹣x=x(x﹣1),属于因式分解,符合题意;D、2yz﹣y2z+z=,原式分解错误,不符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.2、B【解析】【分析】根据提公因式法因式分解,先提出,即可求得答案【详解】解:故选B【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.3、D【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】解:A、是整式的乘法,故此选项不符合题意;B、不属于因式分解,故此选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;D、把一个多项式转化成几个整式积的形式,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.4、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.【详解】解:A、,不能进行因式分解,不符合题意;B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).5、A【解析】【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x2-4x+y2-6y+13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.6、D【解析】【分析】根据因式分解的定义严格判断即可.【详解】∵+1≠a(a+1)∴A分解不正确;∵,不是因式分解,∴B不符合题意;∵(a﹣2)(a+3)+1含有加法运算,∴C不符合题意;∵,∴D分解正确;故选D.【点睛】本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.7、B【解析】【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y).故选:B.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.8、B【解析】【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、(x+y)2﹣x2=2xy+y2=y(2x+y),把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;C、3mx2﹣2nx+x=x(3mx﹣2n+1),故此选项不符合题意;D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.故选:B.【点睛】本题考查了因式分解的定义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.9、D【解析】【分析】根据提公因式法和平方差公式分解因式.【详解】解:2a2(x-y)+2b2(y-x)=2a2(x-y)-2b2(x-y)=(2a2-2b2)(x-y)=2(a2-b2)(x-y)=2(a-b)(a+b)(x-y).故选:D.【点睛】此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.10、B【解析】【分析】根据因式分解的定义“把一个多项式化成几个整式的积的形式叫做因式分解”进行解答即可得.【详解】解:A、,不是因式分解,选项说法错误,不符合题意;B、,是因式分解,选项说法正确,符合题意;C、,不是因式分解,选项说法错误,不符合题意;D、左、右不相等,选项说法错误,不符合题意;故选B.【点睛】本题考查了因式分解,解题的关键是熟记因式分解的定义.二、填空题1、1【解析】【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解.【详解】解:∵,∴当x=1时,x2﹣2x+1取得最小值.故答案为:1.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式.2、【解析】【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案.【详解】解:∵要使得能用完全平方公式分解因式,∴应满足,∵,∴,故答案为:.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.3、【解析】【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】解:原式,故答案为:.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.4、1【解析】【分析】首先利用完全平方公式得出a,b的值,进而得出答案.【详解】解:∵a2+b2+5=4a﹣2b,∴ ,∴(a﹣2)2+(b+1)2=0,∴a=2,b=﹣1,∴(a+b)2021=(2﹣1)2021=1.故答案为:1【点睛】本题主要考查了完全平方公式的应用,熟练掌握 ,是解题的关键.5、【解析】【分析】原式提取公因式5,再利用平方差公式分解即可.【详解】解:原式=5(a2﹣9b2)=5(a+3b)(a﹣3b).故答案为:5(a+3b)(a﹣3b).【点睛】此题考查了运用提公因式法和平方差公式分解因式,正确掌握因式分解的方法是解题的关键.三、解答题1、(1);(2);(3)【解析】【分析】(1)利用提取公式法因式分解即可;(2)利用提取公式法因式分解即可;(3)提取公因式2y,在利用完全平方公式因式分解即可.【详解】解:(1);(2)(3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2、(1)2b2;(2)a2﹣4ab+4b2+2a﹣4b+1;(3)﹣8a(a﹣b).【解析】【分析】(1)先计算乘方,再计算除法可得;(2)利用完全平方公式计算可得;(3)先提公因式,再利用平方差分解可得.【详解】(1)原式=8a3•b4÷4a3b2=8a3b4÷4a3b2=2b2;(2)原式=[(a﹣2b)+1]2=(a﹣2b)2+2(a﹣2b)+12=a2﹣4ab+4b2+2a﹣4b+1;(3)原式=[(a﹣2b)+(3a﹣2b)]•[(a﹣2b)﹣(3a﹣2b)]=(4a﹣4b)•(﹣2a)=﹣8a(a﹣b).【点睛】本题主要考查整式的混合运算、完全平方公式和因式分解的能力,掌握基本运算是解题的关键.3、【解析】【分析】先提取公因式,再用十字相乘法分解即可.【详解】解:==.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.4、(1)①;②;(2)①;②【解析】【分析】(1)先算乘方,再算乘除,即可求解;(2)直接个那句多项式除以单项式法则计算,即可求解;(3)利用提出公因式法因式分解,即可求解;(4)利用平方差公式,即可求解.【详解】解:① ; ② ;(2)① ; ② .【点睛】本题主要考查了多项式除以单项式,多项式的因式分解,熟练掌握相关运算法则是解题的关键.5、 (1)3(a+3)(a-3)(2)m(m-1)2【解析】【分析】(1)先提公因式3,再利用平方差公式分解因式即可;(2)先提公因式m,再利用完全平方公式分解因式即可.【小题1】解:原式=3(a2-9)=3(a+3)(a-3);【小题2】原式=m(m2-2m+1)=m(m-1)2.【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式法分解因式是解题关键.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试课时作业,共15页。试卷主要包含了多项式分解因式的结果是,计算的值是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十一章 因式分解综合与测试随堂练习题,共18页。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试练习,共18页。试卷主要包含了对于有理数a,b,c,有,下列各式中,不能因式分解的是等内容,欢迎下载使用。