![2021-2022学年基础强化冀教版七年级数学下册第十一章 因式分解同步测试试卷(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12719137/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版七年级数学下册第十一章 因式分解同步测试试卷(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12719137/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版七年级数学下册第十一章 因式分解同步测试试卷(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12719137/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第十一章 因式分解综合与测试练习题
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试练习题,共18页。试卷主要包含了下列多项式中有因式x﹣1的是,把代数式分解因式,正确的结果是,若a等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知x,y满足,则的值为( )A.—5 B.4 C.5 D.252、下列运算错误的是( )A. B. C. D.(a≠0)3、下列从左边到右边的变形,是因式分解的是( )A.(3﹣x)(3+x)=9﹣x2 B.x2+y2=(x+y)(x﹣y)C.x2﹣x=x(x﹣1) D.2yz﹣y2z+z=y(2z﹣yz)+z4、下列由左到右的变形,属于因式分解的是( )A. B.C. D.5、下列等式中,从左到右的变形是因式分解的是( )A.m(a+b)=ma+mb B.x2+3x+2=(x+1)(x+2)C.x2+xy﹣3=x(x+y)﹣3 D.6、下列各式中,能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.﹣a2+b2 C.a2+(﹣b)2 D.a3﹣ab37、下列多项式中有因式x﹣1的是( )①x2+x﹣2;②x2+3x+2;③x2﹣x﹣2;④x2﹣3x+2A.①② B.②③ C.②④ D.①④8、把代数式分解因式,正确的结果是( )A.-ab(ab+3b) B.-ab(ab+3b-1)C.-ab(ab-3b+1) D.-ab(ab-b-1)9、若a、b、c为一个三角形的三边,则代数式(a-c)2-b2的值( )A.一定为正数 B.一定为负数C.为非负数 D.可能为正数,也可能为负数10、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )A.非负数 B.正数 C.负数 D.非正数第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当x=4,a+b=-3时,代数式:ax+bx的值为________.2、若实数满足,则___________.3、因式分解:2a2-4a-6=________.4、要使多项式x2﹣ax﹣20在整数范围内可因式分解,给出整数a=____________.5、已知a+b=4,ab=1,则a3b+2a2b2+ab3的值为________________.三、解答题(5小题,每小题10分,共计50分)1、阅读下面材料:小颖这学期学习了轴对称的知识,知道了像角、等腰三角形、正方形、圆等图形都是轴对称图形,类比这一特性,小颖发现像等代数式,如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是她把这样的式子命名为神奇对称式,她还发现像等神奇对称式都可以用表示.例如:,.于是小颖把和称为基本神奇对称式,请根据以上材料解决下列问题:(1)①,②,③,④中,属于神奇对称式的是_______(填序号);(2)已知.①若,则神奇对称式_______;②若,求神奇对称式的最小值.2、观察下列因式分解的过程:①②③……根据上述因式分解的方法,尝试将下列各式进行因式分解:(1);(2).3、分解因式:(1) (2)4、因式分解:(1)(2)(3)5、分解因式:2x3+12x2y+18xy2. -参考答案-一、单选题1、A【解析】【分析】根据题意利用平方差公式将变形,进而整体代入条件即可求得答案.【详解】解:.故选:A.【点睛】本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.2、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a≠0),故该选项正确,不符合题意,故选A.【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.3、C【解析】【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.【详解】解:A、(3﹣x)(3+x)=9﹣x2属于整式的乘法运算,不是因式分解,不符合题意;B、,原式错误,不符合题意;C、x2﹣x=x(x﹣1),属于因式分解,符合题意;D、2yz﹣y2z+z=,原式分解错误,不符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.4、A【解析】【分析】直接利用因式分解的定义分别分析得出答案.【详解】解:、,是因式分解,符合题意.、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A.【点睛】本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.5、B【解析】【分析】将多项式写成几个整式的积的形式叫做因式分解,根据因式分解的定义依次判断.【详解】解:m(a+b)=ma+mb是整式乘法,故选项A不符合题意;x2+3x+2=(x+1)(x+2)是因式分解,故选项B符合题意;x2+xy﹣3=x(x+y)﹣3不是因式分解,故选项C不符合题意;不是因式分解,故选项D不符合题意;故选:B.【点睛】此题考查了因式分解的定义,熟记定义并正确理解是解题的关键.6、B【解析】【分析】能用平方差公式分解因式的式子必须是两项是平方项,符号为异号.【详解】解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;B、,能用平方差公式分解因式,故此选项正确;C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;D.提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误.故选B.【点睛】本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键.7、D【解析】【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x2+x﹣2=;②x2+3x+2=;③x2﹣x﹣2=;④x2﹣3x+2=.∴有因式x﹣1的是①④.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.8、B【解析】【分析】根据提公因式法因式分解,先提出,即可求得答案【详解】解:故选B【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.9、B【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:∵a、b、c为一个三角形的三边,∴a-c+b>0,a-c-b<0,∴(a-c)2-b2=(a-c+b)(a-c-b)<0.∴代数式(a-c)2-b2的值一定为负数.故选:B.【点睛】本题考查了运用平方差公式因式分解,利用了三角形中三边的关系:在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.10、A【解析】【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x2-4x+y2-6y+13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.二、填空题1、-12【解析】【分析】本题可先代入x的值得4(a+b),再把a+b=-3整体代入求值即可.【详解】解:∵x=4,a+b=-3∴ax+bx故答案为:-12【点睛】本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想.2、【解析】【分析】把原式化为可得再利用非负数的性质求解从而可得答案.【详解】解: , 而 解得: 故答案为:【点睛】本题考查的是非负数的性质,利用完全平方公式的变形求解代数式的值,因式分解的应用,熟练的运用完全平方公式是解本题的关键.3、2(a-3)(a+1)## 2(a+1)(a-3)【解析】【分析】提取公因式2,再用十字相乘法分解因式即可.【详解】解:2a2-4a-6=2(a2-2a-3)=2(a-3)(a+1)故答案为:2(a-3)(a+1)【点睛】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.4、±1或±19或±8【解析】【分析】把﹣20分成20和﹣1,﹣2和10,5和﹣4,﹣5和4,2和﹣10,﹣20和1,进而得出即原式分解为(x+20)(x﹣1),(x﹣2)(x+10),(x+5)(x﹣4),(x﹣5)(x+4),(x+2)(x﹣10),(x﹣20)(x+1),即可得到答案.【详解】解:当x2﹣ax﹣20=(x+20)(x﹣1)时,a=20+(﹣1)=19,当x2﹣ax﹣20=(x﹣2)(x+10)时,a=﹣2+10=8,当x2﹣ax﹣20=(x+5)(x﹣4)时,a=5+(﹣4)=1,当x2﹣ax﹣20=(x﹣5)(x+4)时,a=﹣5+4=﹣1,当x2﹣ax﹣20=(x+2)(x﹣10)时,a=2+(﹣10)=﹣8,当x2﹣ax﹣20=(x﹣20)(x+1)时,a=﹣20+1=﹣19,综上所述:整数a的值为±1或±19或±8.故答案为:±1或±19或±8.【点睛】本题主要考查对因式分解−十字相乘法的理解和掌握,理解x2+(a+b)x+ab=(x+a)(x+b)是解此题的关键.5、16【解析】【分析】先提取公因式ab,然后再用完全平方公式因式分解,最后代入计算即可.【详解】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=1×42=16.故答案是16.【点睛】本题主要考查了因式分解的应用,掌握运用提取公因式法和完全平方公式因式分解是解答本题的关键.三、解答题1、 (1)①④(2)①;②【解析】【分析】(1)神奇对称式是指任意交换两个字母的位置,式子的值都不变的代数式;由定义可知,交换①②③中④中、、的位置,若值不变则符合题意.(2)①将代入中求得的值,代入求解即可.②将代入中求得的值,由求出的取值范围;将进行配方得将的最小值代入即可.(1)解:将①②③中交换位置可得①,符合题意;②,不符合题意;③,不符合题意;④交换的位置,同理交换其他两个仍成立,符合题意;故答案为:①④.(2)解:①或代入得故答案为:.②,有或∴神奇对称式的最小值为.【点睛】本题考查了因式分解,完全平方公式,不等式等知识.解题的关键在于因式分解得到m、n的关系,不等式求出代数式m+n的取值范围,配完全平方表示出所求代数式的形式.2、(1);(2)【解析】【分析】(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;(2)根据题中的方法分解因式即可.【详解】解:(1);(2).【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解.3、(1);(2)【解析】【分析】(1)先提公因式-3,再利用完全平方公式分解;(2)先提公因式(x-y),再利用平方差公式分解因式.【详解】解:(1)==(2)===.【点睛】此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)及解决问题是解题的关键.4、 (1)2a(a2+3b);(2)5(x+y)(x﹣y);(3)﹣3(x﹣y)2.【解析】【分析】(1)直接提公因式2a即可;(2)先提公因式,再利用平方差公式即可;(3)先提公因式,再利用完全平方公式即可.(1)解:=2a(a2+3b);(2)解:(2)原式=5(x2﹣y2)=5(x+y)(x﹣y);(3)解:(3)原式=﹣3(x2﹣2xy+y2)=﹣3(x﹣y)2.【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.5、2x(x+3y)2【解析】【分析】先提公因式,进而根据完全平方公式因式分解即可.【详解】解:2x3+12x2y+18xy2=2x(x2+6xy+9y2)=2x(x+3y)2.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试练习,共15页。
这是一份冀教版七年级下册第十一章 因式分解综合与测试同步测试题,共20页。试卷主要包含了下列因式分解正确的是,已知c<a<b<0,若M=|a,下列多项式不能因式分解的是,下列因式分解中,正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试巩固练习,共19页。试卷主要包含了下列各式因式分解正确的是,下列各式从左至右是因式分解的是,下列各式中,不能因式分解的是等内容,欢迎下载使用。