冀教版七年级下册第十一章 因式分解综合与测试精练
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试精练,共15页。试卷主要包含了已知c<a<b<0,若M=|a,多项式分解因式的结果是,已知,,求代数式的值为等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解错误的是( )A.3x-3y=3(x-y) B.x2-4=(x+2)(x-2)C.x2+6x-9=(x+9)2 D.-x2-x+2=-(x-1)(x+2)2、若、、为一个三角形的三边长,则式子的值( )A.一定为正数 B.一定为负数 C.可能是正数,也可能是负数 D.可能为03、下列因式分解正确的是( )A. B.C. D.4、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )A.M<N B.M=N C.M>N D.不能确定5、下列多项式中能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.x2+(﹣y)2C.(﹣x)2+(﹣y)2 D.﹣m2+16、多项式分解因式的结果是( )A. B.C. D.7、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.8、已知,,求代数式的值为( )A.18 B.28 C.50 D.609、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.10、下列各式由左边到右边的变形中,是因式分解的是( )A.10x2﹣5x=5x(2x﹣1) B.x2﹣4x+4=x(x﹣4)+4C.a(x+y)=ax+ay D.x2﹣16+3x=(x+4)(x﹣4)+3x第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_________,_________,_________.分解因式:_________,_________,________.2、因式分解:2a2-4a-6=________.3、若,则代数式的值等于______.4、分解因式:______.5、分解因式:﹣8a3b+8a2b2﹣2ab3=_____.三、解答题(5小题,每小题10分,共计50分)1、如果的三边长满足等式,试判断此的形状并写出你的判断依据.2、已知,求的值.3、因式分解:(y2﹣y)2﹣14(y2﹣y)+24.4、分解因式:(1) (2)5、因式分解: -参考答案-一、单选题1、C【解析】【分析】提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可.【详解】解:显然对于A,B,D正确,不乖合题意,对于C:右边≠左边,故C错误,符合题意;故选:C.【点睛】本题考查了因式分解,熟练掌因式分解的方法是解题的关键.2、B【解析】【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】解:原式=(a-c+b)(a-c-b),∵两边之和大于第三边,两边之差小于第三边,∴a-c+b>0,a-c-b<0,∵两数相乘,异号得负,∴代数式的值小于0.故选:B.【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.3、D【解析】【分析】各项分解得到结果,即可作出判断.【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、C【解析】【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:∵c<a<b<0,∴a-c>0,∴M=|a(a﹣c)|=- a(a﹣c)N=|b(a﹣c)|=- b(a﹣c)∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)∵b-a>0,∴(a﹣c)(b﹣a)>0∴M>N方法二: ∵c<a<b<0,∴可设c=-3,a=-2,b=-1,∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1∴M>N故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.5、D【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D.【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.6、B【解析】【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y).故选:B.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.7、D【解析】【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.【详解】解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;B、是整式的乘法运算,不是因式分解,则此项不符题意;C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;故选:D.【点睛】本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.8、A【解析】【分析】先利用提公因式法和完全平方公式对所求代数式因式分解,再整体代入求值即可.【详解】解:==,当,时,原式=2×32=2×9=18,故选:A.【点睛】本题考查代数式求值、因式分解、完全平方公式,熟记公式,熟练掌握因式分解的方法是解答的关键.9、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.10、A【解析】【详解】因式分解就是把多项式分解成整式的积的形式,依据定义即可判断.【分析】解:A、正确;B、结果不是整式的积的形式,故不是因式分解,选项错误;C、结果不是整式的积的形式,故不是因式分解,选项错误;D、结果不是整式的积的形式,故不是因式分解,选项错误.故选:A.【点睛】本题考查了因式分解的定义,理解因式分解的结过是整式的积的形式是解题的关键.二、填空题1、 【解析】【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可【详解】解:计算:,,.分解因式:,,.故答案为:;;;;;【点睛】本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键.2、2(a-3)(a+1)## 2(a+1)(a-3)【解析】【分析】提取公因式2,再用十字相乘法分解因式即可.【详解】解:2a2-4a-6=2(a2-2a-3)=2(a-3)(a+1)故答案为:2(a-3)(a+1)【点睛】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.3、9【解析】【分析】先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解.【详解】解:∵,∴,∴=====9故答案为:9.【点睛】本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键.4、【解析】【分析】根据提取公因式法,提取公因式即可求解.【详解】解:,故答案为:.【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法.5、﹣2ab(2a﹣b)2【解析】【分析】先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式=﹣2ab(4a2﹣4ab+b2)=﹣2ab(2a﹣b)2,故答案为:﹣2ab(2a﹣b)2.【点睛】本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.三、解答题1、是等边三角形,理由见解析【解析】【分析】利用因式分解得出三边长的关系,即可判断三角形形状.【详解】解:是等边三角形证明:∵,∴.∴,即,∴,∴,即,∴是等边三角形.【点睛】本题考查了因式分解的应用,解题关键是熟练进行因式分解,得出三角形的三边关系.2、4【解析】【分析】先利用平方差公式计算,再合并,然后根据,得到代入即可求解.【详解】解: . ∵,∴. ∴.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的混合运算法则是解题的关键.3、(y﹣2)(y+1)(y﹣4)(y+3)【解析】【分析】将看做整体,再十字相乘法因式分解,注意分解要彻底.【详解】原式=(y2﹣y﹣2)(y2﹣y﹣12)=(y﹣2)(y+1)(y﹣4)(y+3).【点睛】本题考查了因式分解,掌握十字分解法是解题的关键.4、(1);(2)【解析】【分析】(1)先提公因式-3,再利用完全平方公式分解;(2)先提公因式(x-y),再利用平方差公式分解因式.【详解】解:(1)==(2)===.【点睛】此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)及解决问题是解题的关键.5、【解析】【分析】根据题意综合运用提取公因式法和公式法进行因式分解即可得出答案.【详解】解:【点睛】本题考查因式分解,熟练掌握并运用提取公因式法和公式法进行因式分解是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了下列因式分解正确的是,计算的值是,已知实数x,y满足等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试课时作业,共15页。试卷主要包含了多项式分解因式的结果是,计算的值是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试达标测试,共18页。试卷主要包含了下列运算错误的是,下列因式分解正确的是,分解因式2a2,下列各式因式分解正确的是等内容,欢迎下载使用。