冀教版七年级下册第十一章 因式分解综合与测试当堂检测题
展开这是一份冀教版七年级下册第十一章 因式分解综合与测试当堂检测题,共17页。试卷主要包含了若a,已知x2+x﹣6=,下列分解因式正确的是,下列因式分解正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式中能用平方差公式计算的是( )
A.(x+y)(y﹣x) B.(x+y)(y+x)
C.(x+y)(﹣y﹣x) D.(x﹣y)(y﹣x)
2、下列从左边到右边的变形中,是因式分解的是( )
A. B.
C. D.
3、下列等式从左到右的变形,属于因式分解的是( )
A. ﹣2x﹣1= B.(a+b)(a﹣b)=
C.﹣4x+4= D.﹣1=
4、若a、b、c为一个三角形的三边,则代数式(a-c)2-b2的值( )
A.一定为正数 B.一定为负数
C.为非负数 D.可能为正数,也可能为负数
5、已知x2+x﹣6=(x+a)(x+b),则( )
A.ab=6 B.ab=﹣6 C.a+b=6 D.a+b=﹣6
6、下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)
7、下列分解因式正确的是( )
A. B.
C. D.
8、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)
9、下列从左到右的变形属于因式分解的是( )
A.x2+2x+1=x(x+2)+1 B.﹣7ab2c3=﹣abc•7bc2
C.m(m+3)=m2+3m D.2x2﹣5x=x(2x﹣5)
10、因式分解x2y﹣9y的正确结果是( )
A.y(x+3)(x﹣3) B.y(x+9)(x﹣9) C.y(x2﹣9) D.y(x﹣3)2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、把多项式a3﹣9ab2分解因式的结果是 _____.
2、若,则_________.
3、(________)(________);
4、若实数x满足,则______.
5、已知a=,则a2﹣2a﹣3的值为_______.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:.
2、因式分解:
(1)2x(x-3)-8;
(2)a2-b2-6a+9.
3、若一个正整数a可以表示为a=(b+1)(b-2),其中b为大于2的正整数,则称a为“十字数”,b为a的“十字点”.例如28=(6+1)×(6-2)=7×4.
(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;
(2)若b是a的“十字点”,且a能被(b-1)整除,其中b为大于2的正整数,求a.
4、观察下列因式分解的过程:
①
②
③
……
根据上述因式分解的方法,尝试将下列各式进行因式分解:
(1);
(2).
5、分解因式:
(1);
(2).
-参考答案-
一、单选题
1、A
【解析】
【分析】
能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.
【详解】
解:A、(x+y)(y﹣x)=不符合平方差公式的特点,故本选项符合题意;
B、(x+y)(y+x),不符合平方差公式的特点,不能用平方差公式计算,故本选项不合题意;
C、(x+y)(﹣y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;
D、(x﹣y)(y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;
故选A.
【点睛】
本题考查的是应用平方差公式进行计算的能力,掌握平方差公式的结构特征是正确解题的关键.
2、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.是因式分解,故本选项符合题意;
B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意;
C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;
D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
3、C
【解析】
【分析】
根据因式分解的定义和方法逐一判断即可.
【详解】
∵=﹣2x+1≠﹣2x﹣1,
∴A不是因式分解,不符合题意;
∵(a+b)(a﹣b)=不符合因式分解的定义,
∴B不是因式分解,不符合题意;
∵﹣4x+4=,符合因式分解的定义,
∴C是因式分解,符合题意;
∵﹣1≠,不符合因式分解的定义,
∴D不是因式分解,不符合题意;
故选C.
【点睛】
本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.
4、B
【解析】
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】
解:∵a、b、c为一个三角形的三边,
∴a-c+b>0,a-c-b<0,
∴(a-c)2-b2=(a-c+b)(a-c-b)<0.
∴代数式(a-c)2-b2的值一定为负数.
故选:B.
【点睛】
本题考查了运用平方差公式因式分解,利用了三角形中三边的关系:在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
5、B
【解析】
【分析】
先利用十字相乘法去掉括号,再根据等式的性质得a+b=1,ab=﹣6.
【详解】
解:∵x2+x﹣6=(x+a)(x+b),
∴x2+x﹣6=x2+(a+b)x+ab,
∴a+b=1,ab=﹣6;
故选:B.
【点睛】
本题考查了十字相乘法分解因式,掌握运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,这是解题关键.
6、C
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.从左到右的变形不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C.从左到右的变形属于因式分解,故本选项符合题意;
D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:C.
【点睛】
此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.
7、C
【解析】
【分析】
根据因式分解的方法逐个判断即可.
【详解】
解:A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,正确,符合题意;
D. ,原选项错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.
8、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.
9、D
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.由定义判断即可.
【详解】
解:A.x2+2x+1=(x+1)2,故A不符合题意;
B.-7ab2c3是单项式,不存在因式分解,故B不符合题意;
C.m(m+3)=m2+3m是单项式乘多项式,故C不符合题意;
D.2x2-5x=x(2x-5)是因式分解,故D符合题意;
故选:D.
【点睛】
本题考查因式分解的意义,熟练掌握因式分解的定义,能够根据所给形式判断是否符合因式分解的变形是解题的关键.
10、A
【解析】
【分析】
先提公因式,再根据平方差公式因式分解即可.
【详解】
解:x2y﹣9y
故选A
【点睛】
本题考查了综合提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.
二、填空题
1、a(a+3b)(a-3b)
【解析】
【分析】
根据题意直接提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
解:a3-9ab2
=a(a2-9b2)
=a(a+3b)(a-3b).
故答案为:a(a+3b)(a-3b).
【点睛】
本题主要考查提取公因式法以及公式法分解因式,正确运用平方差公式分解因式是解题的关键.
2、2022
【解析】
【分析】
根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.
【详解】
∵
∴
∴
故填“2022”.
【点睛】
本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.
3、;;;;;
【解析】
【分析】
利用十字相乘法进行因式分解即可得.
【详解】
解:;
;
;
;
;
;
故答案为:;;;;;.
【点睛】
本题考查了利用十字相乘法进行因式分解,熟练掌握十字相乘法是解题关键.二次三项式,若存在 ,则.
4、2022
【解析】
【分析】
将x2=2x+1,x2﹣2x=1代入计算可求解.
【详解】
解:∵x2﹣2x﹣1=0,
∴x2=2x+1,x2﹣2x=1,
∴原式=2x•x2﹣2x2﹣6x+2020
=2x(2x+1)﹣2x2﹣6x+2020
=4x2+2x﹣2x2﹣6x+2020
=2x2﹣4x+2020
=2(x2﹣2x)+2020
=2×1+2020
=2022.
故答案为:2022
【点睛】
本题主要考查因式分解的应用,适当的进行因式分解,整体代入是解题的关键.
5、-2
【解析】
【分析】
将所求算式因式分解,再将代入,整理,最后利用平方差公式计算即可.
【详解】
解: ,
将代入得:
.
故答案为:-2.
【点睛】
本题考查因式分解,代数式求值以及平方差公式.利用整体代入的思想是解答本题的关键.
三、解答题
1、x(x-3)(x+3)
【解析】
【分析】
先提取公因式x,然后利用平方差公式分解因式即可.
【详解】
解:x3-9x
=x(x2-9)
=x(x-3)(x+3).
【点睛】
本题主要考查了分解因式,熟知分解因式的方法是解题的关键.
2、 (1)2(x-4)(x+1)
(2)
【解析】
【分析】
(1)先去括号,再提公因式2,最后利用十字相乘法解题;
(2)先分组,再结合平方差公式、完全平方公式解题.
(1)
2x(x-3)-8=2x2-6x-8=2(x2-3x-4)=2(x-4)(x+1)
(2)
a2-b2-6a+9= a2 -6a+9-b2
=
【点睛】
本题考查因式分解,是重要考点,涉及平方差公式、完全平方公式,掌握相关知识是解题关键.
3、解:原式=5x(x2﹣4xy+4y2)=5x(x﹣2y)
【点睛】
本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.也考查了整式的混合运算.
2.(1)40,12
(2)4
【解析】
【分析】
(1)根据定义解答即可;
(2)根据b是a的十字点,写出a的表达式,因为a能被(b-1)整除,所以对表达式进行变形,得到(b-1)能整除2,求出b的值,进而得到a的值.
(1)
十字点为7的十字数a=(7+1)(7﹣2)=8×5=40,
∵130=(12+1)(12﹣2)=13×10,
∴130的十字点为12.
故答案为:40,12;
(2)
∵b是a的十字点,
∴a=(b+1)(b﹣2)(b>2且为正整数),
∴a=(b﹣1+2)(b﹣1﹣1)=(b﹣1)2+(b﹣1)﹣2,
∵a能被(b﹣1)整除,
∴(b﹣1)能整除2,
∴b﹣1=1或b﹣1=2,
∵b>2,
∴b=3,
∴a=(3+1)(3﹣2)=4.
【点睛】
本题考查了因式分解的应用,有一定的技巧性,解题的关键是看懂定义,根据题中的条件进行变形.
4、(1);(2)
【解析】
【分析】
(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;
(2)根据题中的方法分解因式即可.
【详解】
解:(1);
(2).
【点睛】
本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解.
5、(1);(2)
【解析】
【分析】
(1)提取m,后用完全平方公式分解;
(2)提取a-b,后用平方差公式分解.
【详解】
解:(1)原式
.
(2)原式
.
【点睛】
本题考查了因式分解,熟练掌握先提后用公式的分解顺序是解题的关键.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试课时作业,共18页。试卷主要包含了下列多项式不能因式分解的是,下列因式分解中,正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共17页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试同步训练题,共16页。试卷主要包含了下列变形,属因式分解的是,如图,长与宽分别为a等内容,欢迎下载使用。