初中数学冀教版七年级下册第十一章 因式分解综合与测试课时练习
展开冀教版七年级数学下册第十一章 因式分解章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列多项式不能用公式法因式分解的是( )
A.a2+4a+4 B.a2﹣a+1 C.﹣a2﹣9 D.a2﹣1
2、下列等式中,从左到右是因式分解的是( )
A. B.
C. D.
3、下列因式分解正确的是( ).
A. B.
C. D.
4、下列变形,属因式分解的是( )
A. B.
C. D.
5、把多项式分解因式,其结果是( )
A. B.
C. D.
6、下列等式从左到右的变形是因式分解的是( )
A. B.
C. D.
7、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
8、下列各式从左至右是因式分解的是( )
A. B.
C. D.
9、因式分解a2b﹣2ab+b正确的是( )
A.b(a2﹣2a) B.ab(a﹣2) C.b(a2﹣2a+1) D.b(a﹣1)2
10、已知实数x,y满足:x2−+2=0,y2−+2=0,则2022|x−y|的值为( )
A. B.1 C.2022 D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:-x+xy-y=________.
2、因式分解:______.
3、若a-b=2,a2-b2=6,则a2+b2=______.
4、把多项式2a3﹣2a分解因式的结果是___.
5、把多项式因式分解的结果是_______.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
(1)3a2﹣27;
(2)m3﹣2m2+m.
2、分解因式:
(1);
(2);
(3)计算:;
(4).
3、下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程
解:设x2+2x=y,
原式 =y(y+2)+1 (第一步)
=y2+2y+1 (第二步)
=(y+1)2 (第三步)
=(x2+2x+1)2 (第四步)
(1)该同学第二步到第三步运用了因式分解的( )
A.提取公因式 B.平方差公式
C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后?
.(填“是”或“否”)如果否,直接写出最后的结果
(3)请你模仿以上方法尝试对多项式(x2﹣4x+3)(x2﹣4x+5)+1进行因式分解.
4、分解因式:
5、把下列各式因式分解
(1);
(2).
-参考答案-
一、单选题
1、C
【解析】
【分析】
直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案.
【详解】
解:A中,故此选项不合题意;
B中,故此选项不合题意;
C中无法分解因式,故此选项符合题意;
D中,故此选项不合题意;
故选:C.
【点睛】
本题考查了利用乘法公式进行因式分解.解题的关键在于对完全平方公式和平方差公式的灵活运用.
2、B
【解析】
【分析】
根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.
【详解】
解:A、,不是整式积的形式,不是因式分解,不符而合题意;
B、,是因式分解,符合题意;
C、,不是乘积的形式,不是因式分解,不符合题意;
D、,不是乘积的形式,不是因式分解,不符合题意;
故选B.
【点睛】
本题主要考查了因式分解的定义,熟知定义是解题的关键.
3、C
【解析】
【分析】
根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误.
故选:C.
【点睛】
本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.
4、A
【解析】
【分析】
依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.
【详解】
解:A、是因式分解,故此选项符合题意;
B、分解错误,故此选项不符合题意;
C、右边不是几个整式的积的形式,故此选项不符合题意;
D、分解错误,故此选项不符合题意;
故选:A.
【点睛】
本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.
5、B
【解析】
【分析】
因为−6×9=−54,−6+9=3,所以利用十字相乘法分解因式即可.
【详解】
解:x2+3x−54=(x−6)(x+9);
故选:B.
【点睛】
本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.
6、A
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.
【详解】
解:A.把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;
B.等式的左边不是多项式,原变形不是因式分解,故此选项不符合题意;
C.不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意;
D.原变形是整式的乘法,不是因式分解,故此选项不符合题意;
故选:A
【点睛】
本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.
7、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
8、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;
B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
C、,是整式的乘法,不是因式分解,故本选项不符合题意;
D、,是整式的乘法,不是因式分解,故本选项不符合题意.
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
9、D
【解析】
【分析】
先提取公因式,再用完全平方公式分解因式即可.
【详解】
解:a2b﹣2ab+b
=b(a2﹣2a+1)
=b(a﹣1)2.
故选:D.
【点睛】
本题考查的是因式分解,掌握“提公因式与公式法分解因式”是解本题的关键. 注意分解因式要彻底.
10、B
【解析】
【分析】
利用偶次方的非负性得到x>0,y>0,两式相减,可求得x-y=0,据此即可求解.
【详解】
解:∵x2−+2=0①,y2−+2=0②,
∴x2+2=,y2+2=,
∵x2+20,y2+20,
∴x>0,y>0,
①-②得:x2−-y2+=0,
整理得:(x-y)(x+y+)=0,
∵x>0,y>0,
∴x+y+>0,
∴x-y=0,
∴2022|x−y|=20220=1,
故选:B.
【点睛】
本题考查了因式分解的应用,非负性的应用,由偶次方的非负性得到x>0,y>0是解题的关键.
二、填空题
1、
【解析】
【分析】
综合利用提公因式法和完全平方公式进行因式分解即可得.
【详解】
解:原式
,
故答案为:.
【点睛】
本题考查了因式分解,熟练掌握因式分解的方法是解题关键.
2、
【解析】
【分析】
先提取公因式,再利用平方差公式计算即可得出答案.
【详解】
解:.
【点睛】
本题考查的是因式分解,比较简单,需要熟练掌握因式分解的方法以及步骤.
3、##6.5
【解析】
【分析】
根据平方差公式求出a+b=3,解方程组,求出解代入计算即可.
【详解】
解:∵a-b=2,a2-b2=6,a2-b2=(a+b)(a-b)
∴a+b=3,
解方程组,得,
∴a2+b2=,
故答案为:.
【点睛】
此题考查了平方差公式的应用,解二元一次方程组,已知字母的值求代数式的值,正确掌握平方差公式是解题的关键.
4、
【解析】
【分析】
直接利用提取公因式法分解因式,进而利用平方差公式分解因式即可.
【详解】
解:2a3﹣2a
=
=;
故答案为2a(a+1)(a-1)
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
5、
【解析】
【分析】
先提取公因式,在利用公式法计算即可;
【详解】
原式;
故答案是:.
【点睛】
本题主要考查了利用提取公因式法和公式法进行因式分解,准确利用公式求解是解题的关键.
三、解答题
1、 (1)3(a+3)(a-3)
(2)m(m-1)2
【解析】
【分析】
(1)先提公因式3,再利用平方差公式分解因式即可;
(2)先提公因式m,再利用完全平方公式分解因式即可.
【小题1】
解:原式=3(a2-9)
=3(a+3)(a-3);
【小题2】
原式=m(m2-2m+1)
=m(m-1)2.
【点睛】
此题主要考查了公式法以及提取公因式法分解因式,正确运用公式法分解因式是解题关键.
2、(1);(2);(3)85;(4).
【解析】
【分析】
(1)综合利用提公因式法和公式法进行因式分解即可得;
(2)利用分组分解法进行因式分解即可得;
(3)先利用公式法分解和,从而可得的值,再代入计算即可得;
(4)先利用十字相乘法分解,再利用提公因式法进行因式分解即可得.
【详解】
解:(1)原式
;
(2)原式
;
(3),
,
,
;
(4)原式
.
【点睛】
本题考查了因式分解和因式分解的应用,熟练掌握并灵活运用因式分解的各方法是解题关键.
3、(1)C;(2)否,;(3)
【解析】
【分析】
(1)根据题意可知,第二步到第三步用到了完全平方公式;
(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;
(3)仿照题意,设然后求解即可.
【详解】
解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式 ,
故选C;
(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,
∴分解分式的结果为:,
故答案为:否,;
(3)设
∴
.
【点睛】
本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意.
4、4(2x-y)(x+y)
【解析】
【分析】
利用平方差公式分解因式即可.
【详解】
解:9x2-(x-2y)2,
=(3x+x-2y)(3x-x+2y),
=4(2x-y)(x+y).
【点睛】
此题考查了公式法分解因式,熟练掌握因式分解的方法是解本题的关键.
5、 (1)
(2)
【解析】
【分析】
(1)先提公因式,再应用平方差公式;
(2)先提公因式,再应用完全平方公式.
(1)
解:原式=,
(2)
解:原式,
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
冀教版七年级下册第十一章 因式分解综合与测试同步练习题: 这是一份冀教版七年级下册第十一章 因式分解综合与测试同步练习题,共18页。试卷主要包含了下列因式分解正确的是,已知,,那么的值为,下列多项式等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试随堂练习题: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了下列因式分解正确的是,计算的值是,已知实数x,y满足等内容,欢迎下载使用。
冀教版七年级下册第十一章 因式分解综合与测试课时作业: 这是一份冀教版七年级下册第十一章 因式分解综合与测试课时作业,共15页。试卷主要包含了多项式分解因式的结果是,计算的值是,下列因式分解正确的是等内容,欢迎下载使用。