![2022年精品解析冀教版七年级数学下册第十一章 因式分解章节练习试题第1页](http://img-preview.51jiaoxi.com/2/3/12719384/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第十一章 因式分解章节练习试题第2页](http://img-preview.51jiaoxi.com/2/3/12719384/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版七年级数学下册第十一章 因式分解章节练习试题第3页](http://img-preview.51jiaoxi.com/2/3/12719384/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十一章 因式分解综合与测试同步测试题
展开
这是一份2021学年第十一章 因式分解综合与测试同步测试题,共16页。试卷主要包含了下列变形,属因式分解的是,下列各式中,不能因式分解的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式从左到右的变形中,是因式分解的为( )A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)2、下列分解因式正确的是( )A. B.C. D.3、下列因式分解中,正确的是( )A. B.C. D.4、下列变形,属因式分解的是( )A. B.C. D.5、下列等式从左到右的变形,属于因式分解的是( )A. B.C. D.6、下列各式中,不能因式分解的是( )A.4x2﹣4x+1 B.x2﹣4y2C.x3﹣2x2y+xy2 D.x2+y2+x2y27、已知a2-2a-1=0,则a4-2a3-2a+1等于( )A.0 B.1 C.2 D.38、下列等式从左到右的变形是因式分解的是( )A. B.C. D.9、已知关于x的二次三项式分解因式的结果是,则代数式的值为( )A.-3 B.-1 C.- D.10、分解因式2a2(x-y)+2b2(y-x)的结果是( )A.(2a2+2b2) (x-y) B.(2a2-2b2) (x-y)C.2(a2-b2) (x-y) D.2(a-b)(a+b)(x-y)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知x2+mx+16能用完全平方公式因式分解,则m的值为 ___.2、分解因式:2x2-4x=_____.3、分解因式:a3﹣2a2b+ab2=___.4、因式分解:2a2﹣4ab+2b2=_____.5、分解因式:=_______.三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1)(2)(3).2、因式分解:(1)(2)(3)3、计算:(1)计算:(2a)3•b4÷4a3b2;(2)计算:(a﹣2b+1)2;(3)分解因式:(a﹣2b)2﹣(3a﹣2b)2.4、因式分解:(1)2x(x-3)-8;(2)a2-b2-6a+9.5、如果的三边长满足等式,试判断此的形状并写出你的判断依据. -参考答案-一、单选题1、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.2、C【解析】【分析】根据因式分解的方法逐个判断即可.【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.3、D【解析】【分析】A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.【详解】解:A、原式,不符合题意;B、原式,不符合题意;C、原式不能分解,不符合题意;D、原式,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、A【解析】【分析】依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.【详解】解:A、是因式分解,故此选项符合题意;B、分解错误,故此选项不符合题意;C、右边不是几个整式的积的形式,故此选项不符合题意;D、分解错误,故此选项不符合题意;故选:A.【点睛】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.5、B【解析】【分析】根据因式分解的定义直接判断即可.【详解】解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意; B.等式从左到右的变形属于因式分解,故本选项符合题意;C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D.属于整式乘法,不属于因式分解,故本选项不符合题意;故答案为:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6、D【解析】【分析】直接利用公式法以及提取公因式分解因式进而判断即可.【详解】解:A、4x2﹣4x+1=(2x−1)2,故本选项不合题意;B、x2﹣4y2=(x+2y)(x-2y),故本选项不合题意;C、x3﹣2x2y+xy2=x(x-y)2,故本选项不合题意;D、x2+y2+x2y2不能因式分解,故本选项符合题意;故选:D.【点睛】此题主要考查了提取公因法以及公式法分解因式,正确应用公式法分解因式是解题关键.7、C【解析】【分析】由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.【详解】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.【点睛】此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.8、A【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;B.等式的左边不是多项式,原变形不是因式分解,故此选项不符合题意;C.不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意; D.原变形是整式的乘法,不是因式分解,故此选项不符合题意;故选:A【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.9、C【解析】【分析】根据因式分解与整式乘法的关系,可求得a与b的值,从而可求得结果的值.【详解】则,∴故选:C【点睛】本题考查了因式分解与整式乘法的关系,负整数指数幂的意义,掌握因式分解与整式乘法的关系是本题的关键.10、D【解析】【分析】根据提公因式法和平方差公式分解因式.【详解】解:2a2(x-y)+2b2(y-x)=2a2(x-y)-2b2(x-y)=(2a2-2b2)(x-y)=2(a2-b2)(x-y)=2(a-b)(a+b)(x-y).故选:D.【点睛】此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.二、填空题1、【解析】【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案.【详解】解:∵要使得能用完全平方公式分解因式,∴应满足,∵,∴,故答案为:.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.2、##【解析】【分析】根据提公因式法因式分解即可【详解】解:2x2-4x=故答案为:【点睛】本题考查了提公因式法因式分解,掌握因式分解的方法是解题的关键.3、【解析】【分析】先提取公因式a,再利用完全平方公式因式分解.【详解】解:,故答案为:.【点睛】本题考查综合利用提公因式法和公式法因式分解.一般有公因式先提取公因式,再看是否能用公式法因式分解.4、【解析】【分析】先提取公因式2,再利用完全平方公式计算可得.【详解】解:原式=.故答案为:【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.5、【解析】【分析】两次利用平方差公式即可解决.【详解】故答案为:【点睛】本题考查了用平方差公式分解因式,注意因式分解要分解到再也不能分解为止.三、解答题1、 (1)(2)(3)【解析】【分析】(1)首先提取公因式3,再用平方差公式进行二次分解即可;(2)首先提取公因式x,再用完全平方公式进行二次分解即可;(3)首先用平方差公式进行分解,再用完全平方公式进行二次分解即可.(1)解:;(2)解:原式;(3)解:原式.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.2、 (1)2a(a2+3b);(2)5(x+y)(x﹣y);(3)﹣3(x﹣y)2.【解析】【分析】(1)直接提公因式2a即可;(2)先提公因式,再利用平方差公式即可;(3)先提公因式,再利用完全平方公式即可.(1)解:=2a(a2+3b);(2)解:(2)原式=5(x2﹣y2)=5(x+y)(x﹣y);(3)解:(3)原式=﹣3(x2﹣2xy+y2)=﹣3(x﹣y)2.【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.3、(1)2b2;(2)a2﹣4ab+4b2+2a﹣4b+1;(3)﹣8a(a﹣b).【解析】【分析】(1)先计算乘方,再计算除法可得;(2)利用完全平方公式计算可得;(3)先提公因式,再利用平方差分解可得.【详解】(1)原式=8a3•b4÷4a3b2=8a3b4÷4a3b2=2b2;(2)原式=[(a﹣2b)+1]2=(a﹣2b)2+2(a﹣2b)+12=a2﹣4ab+4b2+2a﹣4b+1;(3)原式=[(a﹣2b)+(3a﹣2b)]•[(a﹣2b)﹣(3a﹣2b)]=(4a﹣4b)•(﹣2a)=﹣8a(a﹣b).【点睛】本题主要考查整式的混合运算、完全平方公式和因式分解的能力,掌握基本运算是解题的关键.4、 (1)2(x-4)(x+1)(2)【解析】【分析】(1)先去括号,再提公因式2,最后利用十字相乘法解题;(2)先分组,再结合平方差公式、完全平方公式解题.(1)2x(x-3)-8=2x2-6x-8=2(x2-3x-4)=2(x-4)(x+1)(2)a2-b2-6a+9= a2 -6a+9-b2=【点睛】本题考查因式分解,是重要考点,涉及平方差公式、完全平方公式,掌握相关知识是解题关键.5、是等边三角形,理由见解析【解析】【分析】利用因式分解得出三边长的关系,即可判断三角形形状.【详解】解:是等边三角形证明:∵,∴.∴,即,∴,∴,即,∴是等边三角形.【点睛】本题考查了因式分解的应用,解题关键是熟练进行因式分解,得出三角形的三边关系.
相关试卷
这是一份初中第十一章 因式分解综合与测试同步练习题,共17页。试卷主要包含了下列分解因式正确的是,若a,下列因式分解正确的是.等内容,欢迎下载使用。
这是一份2020-2021学年第十一章 因式分解综合与测试课时作业,共17页。试卷主要包含了已知x,y满足,则的值为,下列因式分解中,正确的是等内容,欢迎下载使用。
这是一份数学冀教版第十一章 因式分解综合与测试习题,共18页。试卷主要包含了已知实数x,y满足,把分解因式的结果是.,下列因式分解正确的是,下列因式分解中,正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)