![2022年最新精品解析冀教版七年级数学下册第十一章 因式分解专项训练试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12719423/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第十一章 因式分解专项训练试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12719423/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第十一章 因式分解专项训练试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12719423/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十一章 因式分解综合与测试课后复习题
展开
这是一份2021学年第十一章 因式分解综合与测试课后复习题,共16页。试卷主要包含了把代数式分解因式,正确的结果是,下列因式分解错误的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、把多项式因式分解得,则常数,的值分别为( )
A.,B.,
C.,D.,
2、对于有理数a,b,c,有(a+100)b=(a+100)c,下列说法正确的是( )
A.若a≠﹣100,则b﹣c=0B.若a≠﹣100,则bc=1
C.若b≠c,则a+b≠cD.若a=﹣100,则ab=c
3、把多项式x3﹣2x2+x分解因式结果正确的是( )
A.x(x2﹣2x)B.x2(x﹣2)
C.x(x+1)(x﹣1)D.x(x﹣1)2
4、下列从左到右的变形,是分解因式的是( )
A.xy2(x﹣1)=x2y2﹣xy2B.2a2+4a=2a(a+2)
C.(a+3)(a﹣3)=a2﹣9D.x2+x﹣5=(x﹣2)(x+3)+1
5、下列各式由左边到右边的变形中,是因式分解的为( )
A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)
C.x2﹣4x+4=(x﹣4)2D.x2﹣16+3x=(x+4)(x﹣4)+3x
6、把代数式分解因式,正确的结果是( )
A.-ab(ab+3b)B.-ab(ab+3b-1)
C.-ab(ab-3b+1)D.-ab(ab-b-1)
7、下列从左边到右边的变形,属于因式分解的是( )
A.B.
C.D.
8、下列各式中,能用完全平方公式分解因式的是( )
A.B.
C.D.
9、下列因式分解错误的是( )
A.3x-3y=3(x-y)B.x2-4=(x+2)(x-2)
C.x2+6x-9=(x+9)2D.-x2-x+2=-(x-1)(x+2)
10、下列从左边到右边的变形,是因式分解的是( )
A.(3﹣x)(3+x)=9﹣x2B.x2+y2=(x+y)(x﹣y)
C.x2﹣x=x(x﹣1)D.2yz﹣y2z+z=y(2z﹣yz)+z
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:__________.
2、因式分解:______.
3、因式分解:4x2y2﹣2x3y=______.
4、分解因式:______.
5、已知x2+mx+16能用完全平方公式因式分解,则m的值为 ___.
三、解答题(5小题,每小题10分,共计50分)
1、已知xy=5,x2y﹣xy2﹣x+y=40.
(1)求x﹣y的值.
(2)求x2+y2的值.
2、把下列各式因式分解
(1);
(2).
3、因式分解
(1)n2(m﹣2)﹣n(2﹣m)
(2)(a2+4)2﹣16a2.
4、(1)计算:
(2)计算:
(3)因式分解:
(4)因式分解:
5、因式分解:(y2﹣y)2﹣14(y2﹣y)+24.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据因式分解是恒等式,展开比较系数即可.
【详解】
∵=,
∴=,
∴n-2=5,m=-2n,
∴n=7,m=-14,
故选A.
【点睛】
本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.
2、A
【解析】
【分析】
将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.
【详解】
解:,
,
,
∴或,
即:或,
A选项中,若,则正确;
其他三个选项均不能得出,
故选:A.
【点睛】
题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.
3、D
【解析】
【分析】
先提取公因式,再按照完全平方公式分解即可得到答案.
【详解】
解:x3﹣2x2+x
故选D
【点睛】
本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.
4、B
【解析】
【分析】
根据因式分解的意义对各选项进行逐一分析即可.
【详解】
解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、符合因式分解的意义,是因式分解,故本选项正确,符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.
故选:B.
【点睛】
本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
5、B
【解析】
【分析】
根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可.
【详解】
解:A. a(x+y)=ax+ay,多项式乘法,故选项A不合题意
B. 10x2﹣5x=5x(2x﹣1)是因式分解,故选项B符合题意;
C. x2﹣4x+4=(x﹣2)2因式分解不正确,故选项C不合题意;
D. x2﹣16+3x=(x+4)(x﹣4)+3x,不是因式分解,故选项D不符合题意.
故选B.
【点睛】
本题考查因式分解,掌握因式分解的定义是解题关键.
6、B
【解析】
【分析】
根据提公因式法因式分解,先提出,即可求得答案
【详解】
解:
故选B
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
7、D
【解析】
【分析】
根据因式分解的定义(把一个多项式化为几个整式的积的形式),平方差公式、完全平方公式,提公因式法依次进行因式分解判断即可得.
【详解】
解:A、选项为整式的乘法;
B、,选项错误;
C、,选项错误;
D、选项正确;
故选:D.
【点睛】
题目主要考查因式分解的定义及方法,熟练掌握利用公式因式分解是解题关键.
8、D
【解析】
【分析】
根据完全平方公式法分解因式,即可求解.
【详解】
解:A、不能用完全平方公式因式分解,故本选项不符合题意;
B、不能用完全平方公式因式分解,故本选项不符合题意;
C、不能用完全平方公式因式分解,故本选项不符合题意;
D、能用完全平方公式因式分解,故本选项符合题意;
故选:D
【点睛】
本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.
9、C
【解析】
【分析】
提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可.
【详解】
解:显然对于A,B,D正确,不乖合题意,
对于C:右边≠左边,故C错误,符合题意;
故选:C.
【点睛】
本题考查了因式分解,熟练掌因式分解的方法是解题的关键.
10、C
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.
【详解】
解:A、(3﹣x)(3+x)=9﹣x2属于整式的乘法运算,不是因式分解,不符合题意;
B、,原式错误,不符合题意;
C、x2﹣x=x(x﹣1),属于因式分解,符合题意;
D、2yz﹣y2z+z=,原式分解错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.
二、填空题
1、
【解析】
【分析】
直接提取公因式3y分解因式即可.
【详解】
解:
=
故答案为:.
【点睛】
此题主要考查了提取公因式法分解因式,正确找到公因式是解题关键.
2、
【解析】
【分析】
直接提取公因式整理即可.
【详解】
解:,
故答案是:.
【点睛】
本题考查了提取公因式因式分解,解题的关键是找准公因式.
3、2x2y(2y-x)
【解析】
【分析】
直接提取公因式2x2y,进而分解因式即可.
【详解】
解:4x2y2-2x3y=2x2y(2y-x).
故答案为:2x2y(2y-x).
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
4、
【解析】
【分析】
首先提取公因式,再根据平方差公式计算,即可得到答案.
【详解】
故答案为:.
【点睛】
本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解.
5、
【解析】
【分析】
利用完全平方公式的结构特征判断,确定出m的值即可得到答案.
【详解】
解:∵要使得能用完全平方公式分解因式,
∴应满足,
∵,
∴,
故答案为:.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.
三、解答题
1、(1)x﹣y=10;(2)x2+y2=110.
【解析】
【分析】
(1)利用提取公因式法对(x2y﹣xy2﹣x+y)进行因式分解,代入求值即可.
(2)利用完全平方公式进行变形处理得到:x2+y2=(x﹣y)2+2xy,代入求值即可.
【详解】
解:(1)∵xy=5,x2y﹣xy2﹣x+y=40,
∴x2y﹣xy2﹣x+y
=xy(x﹣y)﹣(x﹣y)
=(xy﹣1)(x﹣y)
∵xy=5,
∴(5﹣1)(x﹣y)=40,
∴x﹣y=10.
(2)x2+y2=(x﹣y)2+2xy=102+2×5=110.
【点睛】
本题考查了因式分解和完全平方公式,做题的关键是掌握完全平方公式的变形x2+y2=(x﹣y)2+2xy.
2、 (1)
(2)
【解析】
【分析】
(1)先提公因式,再应用平方差公式;
(2)先提公因式,再应用完全平方公式.
(1)
解:原式=,
(2)
解:原式,
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
3、(1)n(m﹣2)(n+1);(2)(a+2)2(a﹣2)2.
【解析】
【分析】
(1)提取公因式,进行因式分解即可;
(2)根据平方差公式以及完全平方公式因式分解即可.
【详解】
(1)n2(m﹣2)﹣n(2﹣m)
=n2(m﹣2)+n(m﹣2)
=n(m﹣2)(n+1);
(2)(a2+4)2﹣16a2
=(a2+4)2﹣(4a)2
=(a2+4a+4)(a2﹣4a+4)
=(a+2)2(a﹣2)2
【点睛】
本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底.
4、(1)(2)(3)(4)
【解析】
【分析】
(1)根据幂的运算法则和合并同类项法则计算即可;
(2)先用平方差公式计算,再运用单项式乘多项式的法则计算即可;
(3)先提取公因式,再运用平方差公式分解即可;
(4)先进行整式运算,再因式分解即可.
【详解】
解:(1)
(2)
=
=
(3)
(4)
=
=
=.
【点睛】
本题考查了整式的运算和因式分解,解题关键是熟记乘法公式和因式分解的方法,准确熟练的进行计算.
5、(y﹣2)(y+1)(y﹣4)(y+3)
【解析】
【分析】
将看做整体,再十字相乘法因式分解,注意分解要彻底.
【详解】
原式=(y2﹣y﹣2)(y2﹣y﹣12)
=(y﹣2)(y+1)(y﹣4)(y+3).
【点睛】
本题考查了因式分解,掌握十字分解法是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课后作业题,共17页。试卷主要包含了下列因式分解正确的是,分解因式2a2,下列运算错误的是,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
这是一份数学冀教版第十一章 因式分解综合与测试习题,共18页。试卷主要包含了已知实数x,y满足,把分解因式的结果是.,下列因式分解正确的是,下列因式分解中,正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试同步训练题,共16页。试卷主要包含了下列变形,属因式分解的是,如图,长与宽分别为a等内容,欢迎下载使用。