![2022年最新精品解析冀教版七年级数学下册第十一章 因式分解定向攻克试题(含详细解析)01](http://img-preview.51jiaoxi.com/2/3/12719472/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第十一章 因式分解定向攻克试题(含详细解析)02](http://img-preview.51jiaoxi.com/2/3/12719472/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级数学下册第十一章 因式分解定向攻克试题(含详细解析)03](http://img-preview.51jiaoxi.com/2/3/12719472/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十一章 因式分解综合与测试课后作业题
展开冀教版七年级数学下册第十一章 因式分解定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、分解因式2a2(x-y)+2b2(y-x)的结果是( )
A.(2a2+2b2) (x-y) B.(2a2-2b2) (x-y)
C.2(a2-b2) (x-y) D.2(a-b)(a+b)(x-y)
2、把代数式分解因式,正确的结果是( )
A.-ab(ab+3b) B.-ab(ab+3b-1)
C.-ab(ab-3b+1) D.-ab(ab-b-1)
3、下列各式从左到右的变形中,是因式分解的为( )
A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1
C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)
4、下列各式因式分解正确的是( )
A. B.
C. D.
5、下列多项式不能用公式法因式分解的是( )
A.a2+4a+4 B.a2﹣a+1 C.﹣a2﹣9 D.a2﹣1
6、下列因式分解正确的是( ).
A. B.
C. D.
7、下列各式中从左到右的变形,是因式分解的是( )
A. B.
C. D.
8、因式分解a2b﹣2ab+b正确的是( )
A.b(a2﹣2a) B.ab(a﹣2) C.b(a2﹣2a+1) D.b(a﹣1)2
9、把多项式x3﹣2x2+x分解因式结果正确的是( )
A.x(x2﹣2x) B.x2(x﹣2)
C.x(x+1)(x﹣1) D.x(x﹣1)2
10、已知a+b=2,a-b=3,则等于( )
A.5 B.6 C.1 D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:________.
2、计算下列各题:
(1)______; (2)______;
(3)______; (4)______.
3、分解因式a2-10a+25的结果是______.
4、若a,b都是有理数,且满足a2+b2+5=4a﹣2b,则(a+b)2021=_____.
5、要使多项式x2﹣ax﹣20在整数范围内可因式分解,给出整数a=____________.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:.
2、(1)整式乘法:(2a2b)3;
(2)分解因式:x3-2x2+x
3、分解因式:
4、(1)计算:2·+;
(2)因式分解:3+12+12x.
5、问题提出:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6
问题探究:为便于研究发现规律,我们可以将问题“一般化”,即将算式中特殊的数字3用具有一般性的字母a代替,原算式化为:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4+a(1+a)5+a(1+a)6
然后我们再从最简单的情形入手,从中发现规律,找到解决问题的方法:
(1)仿照②,写出将1+a+a(1+a)+a(1+a)2+a(1+a)3进行因式分解的过程;
(2)填空:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4= ;
发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n= ;
问题解决:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6= (结果用乘方表示).
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据提公因式法和平方差公式分解因式.
【详解】
解:2a2(x-y)+2b2(y-x)
=2a2(x-y)-2b2(x-y)
=(2a2-2b2)(x-y)
=2(a2-b2)(x-y)
=2(a-b)(a+b)(x-y).
故选:D.
【点睛】
此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.
2、B
【解析】
【分析】
根据提公因式法因式分解,先提出,即可求得答案
【详解】
解:
故选B
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
3、C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A错误,不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;
C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;
D、等号左右两边式子不相等,故D错误,不符合题意;
故选C
【点睛】
本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.
4、B
【解析】
【分析】
根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.
【详解】
解:A、不能进行因式分解,错误;
B、选项正确,是因式分解;
C、选项是整式的乘法,不是因式分解,不符合题意;
D、,选项因式分解错误;
故选:B.
【点睛】
题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.
5、C
【解析】
【分析】
直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案.
【详解】
解:A中,故此选项不合题意;
B中,故此选项不合题意;
C中无法分解因式,故此选项符合题意;
D中,故此选项不合题意;
故选:C.
【点睛】
本题考查了利用乘法公式进行因式分解.解题的关键在于对完全平方公式和平方差公式的灵活运用.
6、C
【解析】
【分析】
根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误.
故选:C.
【点睛】
本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.
7、B
【解析】
【分析】
因式分解的结果是几个整式的积的形式.
【详解】
解:A.从左到右的变形是整式乘法,不是因式分解,故本选项不符合题意;
B.从左到右的变形是因式分解,故本选项符合题意;
C. ,故本选项不符合题意;
D.,故本选项不符合题意;
故选:B.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
8、D
【解析】
【分析】
先提取公因式,再用完全平方公式分解因式即可.
【详解】
解:a2b﹣2ab+b
=b(a2﹣2a+1)
=b(a﹣1)2.
故选:D.
【点睛】
本题考查的是因式分解,掌握“提公因式与公式法分解因式”是解本题的关键. 注意分解因式要彻底.
9、D
【解析】
【分析】
先提取公因式,再按照完全平方公式分解即可得到答案.
【详解】
解:x3﹣2x2+x
故选D
【点睛】
本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.
10、B
【解析】
【分析】
根据平方差公式因式分解即可求解
【详解】
∵a+b=2,a-b=3,
∴
故选B
【点睛】
本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.
二、填空题
1、##
【解析】
【分析】
根据完全平方公式进行因式分解即可.
【详解】
解:原式,
故答案为:.
【点睛】
本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.
2、
【解析】
【分析】
(1)根据同底数幂相乘运算法则计算即可;
(2)根据积的乘方的运算法则计算即可;
(3)根据幂的乘方的运算法则计算即可;
(3)根据提取公因式法因式分解即可.
【详解】
解:(1);
(2);
(3);
(4).
故答案是:(1);(2);(3);(4).
【点睛】
本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.
3、(a-5)2
【解析】
【分析】
直接用完全平方公式进行因式分解即可.
【详解】
a2-10a+25=(a-5)2
故答案为:(a-5)2.
【点睛】
此题考查了公式法分解因式,熟记完全平方公式是解本题的关键.
4、1
【解析】
【分析】
首先利用完全平方公式得出a,b的值,进而得出答案.
【详解】
解:∵a2+b2+5=4a﹣2b,
∴ ,
∴(a﹣2)2+(b+1)2=0,
∴a=2,b=﹣1,
∴(a+b)2021=(2﹣1)2021=1.
故答案为:1
【点睛】
本题主要考查了完全平方公式的应用,熟练掌握 ,是解题的关键.
5、±1或±19或±8
【解析】
【分析】
把﹣20分成20和﹣1,﹣2和10,5和﹣4,﹣5和4,2和﹣10,﹣20和1,进而得出即原式分解为(x+20)(x﹣1),(x﹣2)(x+10),(x+5)(x﹣4),(x﹣5)(x+4),(x+2)(x﹣10),(x﹣20)(x+1),即可得到答案.
【详解】
解:当x2﹣ax﹣20=(x+20)(x﹣1)时,a=20+(﹣1)=19,
当x2﹣ax﹣20=(x﹣2)(x+10)时,a=﹣2+10=8,
当x2﹣ax﹣20=(x+5)(x﹣4)时,a=5+(﹣4)=1,
当x2﹣ax﹣20=(x﹣5)(x+4)时,a=﹣5+4=﹣1,
当x2﹣ax﹣20=(x+2)(x﹣10)时,a=2+(﹣10)=﹣8,
当x2﹣ax﹣20=(x﹣20)(x+1)时,a=﹣20+1=﹣19,
综上所述:整数a的值为±1或±19或±8.
故答案为:±1或±19或±8.
【点睛】
本题主要考查对因式分解−十字相乘法的理解和掌握,理解x2+(a+b)x+ab=(x+a)(x+b)是解此题的关键.
三、解答题
1、
【解析】
【分析】
先提取公因式y,再根据平方差公式进行二次分解即可求得答案.
【详解】
解:
故答案为:.
【点睛】
本题考查了提公因式法,公式法分解因式,解题的关键是注意分解要彻底.
2、(1)8a6b3;(2)x(x-1)2
【解析】
【分析】
(1)根据整式的运算法则即可求出答案;
(2)先提公因式,再利用完全平方公式分解因式即可.
【详解】
解:(1)原式=;
(2)原式=.
【点睛】
本题考查了整式的混合运算及因式分解,解题的关键是熟练运用整式的运算法则及完全平方公式分解因式,本题属于基础题型.
3、4(2x-y)(x+y)
【解析】
【分析】
利用平方差公式分解因式即可.
【详解】
解:9x2-(x-2y)2,
=(3x+x-2y)(3x-x+2y),
=4(2x-y)(x+y).
【点睛】
此题考查了公式法分解因式,熟练掌握因式分解的方法是解本题的关键.
4、(1)0;(2)3x
【解析】
【分析】
(1)根据题意,得·=,,合并同类项即可;
(2)先提取公因式3x,后套用完全平方公式即可.
【详解】
(1)2·+
原式=2+-3
=0.
(2)原式=3x(+4x+4)
=3x.
【点睛】
本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键.
5、 (1)(1+a)4
(2)(1+a)5;(1+a)n+1;47
【解析】
【分析】
(1)用提取公因式(1+a)一步步分解因式,最后化为积的形式;
(2)通过前面(1)的例子,用提取公因式法(1+a)一步步分解因式,最后化为积的形式,
发现规律:是根据(1)(2)的结果写出结论;
问题解决:通过前面的例子,用提取公因式法(1+3)一步步分解因式,最后化为积的形式.
(1)
解:1+a+a(1+a)+a(1+a)2+a(1+a)3
=(1+a)(1+a)+a(1+a)2+a(1+a)3
=(1+a)2(1+a)+a(1+a)3
=(1+a)3+a(1+a)3
=(1+a)3(1+a)
=(1+a)4;
(2)
解:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4
=(1+a)(1+a)+a(1+a)2+a(1+a)3+a(1+a)4
=(1+a)2(1+a)+a(1+a)3+a(1+a)4
=(1+a)3+a(1+a)3+a(1+a)4
=(1+a)3(1+a)+a(1+a)4
=(1+a)4+a(1+a)4
=(1+a)4(1+a)
=(1+a)5;
故答案为:(1+a)5;
发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n=(1+a)n+1;
故答案为:(1+a)n+1;
问题解决:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6
=(1+3)(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6
=(1+3)2(1+3)+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6
=(1+3)3(1+3)+3(1+3)4+3(1+3)5+3(1+3)6
=(1+3)4(1+3)+3(1+3)5+3(1+3)6
=(1+3)5(1+3)+3(1+3)6
=(1+3)6(1+3)
=(1+3)7
=47.
故答案为:47.
【点睛】
此题考查了数字类运算的规律,提公因式法分解因式,整式的混合运算法则,正确掌握提公因式法分解因式是解题的关键,同时还考查了类比解题的思想.
数学冀教版第十一章 因式分解综合与测试练习: 这是一份数学冀教版第十一章 因式分解综合与测试练习,共19页。试卷主要包含了下列分解因式正确的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试课时作业: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课时作业,共17页。试卷主要包含了把分解因式的结果是.,下列各式从左至右是因式分解的是,已知x2+x﹣6=,对于有理数a,b,c,有等内容,欢迎下载使用。
初中数学第十一章 因式分解综合与测试综合训练题: 这是一份初中数学第十一章 因式分解综合与测试综合训练题,共18页。试卷主要包含了已知,,求代数式的值为等内容,欢迎下载使用。