初中数学冀教版七年级下册第十一章 因式分解综合与测试课时练习
展开冀教版七年级数学下册第十一章 因式分解综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )
A.2个 B.3个 C.4个 D.5个
2、下列因式分解正确的是( )
A. B.
C. D.
3、下列各式从左到右进行因式分解正确的是( )
A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2
C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)
4、下列各式由左边到右边的变形中,是因式分解的为( )
A.a(x+y)=ax+ay B.10x2﹣5x=5x(2x﹣1)
C.x2﹣4x+4=(x﹣4)2 D.x2﹣16+3x=(x+4)(x﹣4)+3x
5、已知关于x的二次三项式分解因式的结果是,则代数式的值为( )
A.-3 B.-1 C.- D.
6、下列等式从左到右的变形,属于因式分解的是( )
A. ﹣2x﹣1= B.(a+b)(a﹣b)=
C.﹣4x+4= D.﹣1=
7、下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)
8、把分解因式的结果是( ).
A. B.
C. D.
9、对于有理数a,b,c,有(a+100)b=(a+100)c,下列说法正确的是( )
A.若a≠﹣100,则b﹣c=0 B.若a≠﹣100,则bc=1
C.若b≠c,则a+b≠c D.若a=﹣100,则ab=c
10、已知c<a<b<0,若M=|a(a﹣c)|,N=|b(a﹣c)|,则M与N的大小关系是( )
A.M<N B.M=N C.M>N D.不能确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、计算下列各题:
(1)______; (2)______;
(3)______; (4)______.
2、已知a+b=4,ab=1,则a3b+2a2b2+ab3的值为________________.
3、若实数满足,则___________.
4、把多项式2m+4mx+2x分解因式的结果为____________.
5、因式分解:ax2-2ax+a=_____.
三、解答题(5小题,每小题10分,共计50分)
1、观察下列因式分解的过程:
①
②
③
……
根据上述因式分解的方法,尝试将下列各式进行因式分解:
(1);
(2).
2、分解因式
(1)(x2﹣3)2﹣2(x2﹣3)+1;
(2)m2(a﹣2)+(2﹣a).
3、已知,求的值.
4、因式分解:
(1)
(2)
(3)
5、因式分解:
(1)
(2)
(3).
-参考答案-
一、单选题
1、B
【解析】
【分析】
平方差公式:,根据平方差公式逐一分析可得答案.
【详解】
解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;
x2-y2能用平方差公式分解因式,故(2)符合题意;
-m2+n2能用平方差公式分解因式,故(3)符合题意;
-b2-a2不能用平方差公式分解因式,故(4)不符合题意;
-a6+4能用平方差公式分解因式,故(5)符合题意;
所以能用平方差公式分解的因式有3个,
故选B
【点睛】
本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.
2、D
【解析】
【分析】
各项分解得到结果,即可作出判断.
【详解】
解:A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、因式分解正确,符合题意,
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
3、B
【解析】
【分析】
因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可
【详解】
解:A. 4a2﹣4a+1=,故该选项不符合题意;
B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;
C. x2+y2(x+y)2,故该选项不符合题意;
D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;
故选B
【点睛】
本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.
4、B
【解析】
【分析】
根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可.
【详解】
解:A. a(x+y)=ax+ay,多项式乘法,故选项A不合题意
B. 10x2﹣5x=5x(2x﹣1)是因式分解,故选项B符合题意;
C. x2﹣4x+4=(x﹣2)2因式分解不正确,故选项C不合题意;
D. x2﹣16+3x=(x+4)(x﹣4)+3x,不是因式分解,故选项D不符合题意.
故选B.
【点睛】
本题考查因式分解,掌握因式分解的定义是解题关键.
5、C
【解析】
【分析】
根据因式分解与整式乘法的关系,可求得a与b的值,从而可求得结果的值.
【详解】
则,
∴
故选:C
【点睛】
本题考查了因式分解与整式乘法的关系,负整数指数幂的意义,掌握因式分解与整式乘法的关系是本题的关键.
6、C
【解析】
【分析】
根据因式分解的定义和方法逐一判断即可.
【详解】
∵=﹣2x+1≠﹣2x﹣1,
∴A不是因式分解,不符合题意;
∵(a+b)(a﹣b)=不符合因式分解的定义,
∴B不是因式分解,不符合题意;
∵﹣4x+4=,符合因式分解的定义,
∴C是因式分解,符合题意;
∵﹣1≠,不符合因式分解的定义,
∴D不是因式分解,不符合题意;
故选C.
【点睛】
本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.
7、C
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.从左到右的变形不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C.从左到右的变形属于因式分解,故本选项符合题意;
D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:C.
【点睛】
此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.
8、B
【解析】
【分析】
先用平方差公式分解因式,在提取公因式即可得出结果.
【详解】
解:a2+2a-b2-2b,
=(a2-b2)+(2a-2b),
=(a+b)(a-b)+2(a-b),
=(a-b)(a+b+2),
故选:B.
【点睛】
此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.
9、A
【解析】
【分析】
将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.
【详解】
解:,
,
,
∴或,
即:或,
A选项中,若,则正确;
其他三个选项均不能得出,
故选:A.
【点睛】
题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.
10、C
【解析】
【分析】
方法一:根据整式的乘法与绝对值化简,得到M-N=(a﹣c)(b﹣a)>0,故可求解;
方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.
【详解】
方法一:∵c<a<b<0,
∴a-c>0,
∴M=|a(a﹣c)|=- a(a﹣c)
N=|b(a﹣c)|=- b(a﹣c)
∴M-N=- a(a﹣c)-[- b(a﹣c)]= - a(a﹣c)+ b(a﹣c)=(a﹣c)(b﹣a)
∵b-a>0,
∴(a﹣c)(b﹣a)>0
∴M>N
方法二: ∵c<a<b<0,
∴可设c=-3,a=-2,b=-1,
∴M=|-2×(-2+3)|=2,N=|-1×(-2+3)|=1
∴M>N
故选C.
【点睛】
此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(a﹣c)(b﹣a)>0,再进行判断.
二、填空题
1、
【解析】
【分析】
(1)根据同底数幂相乘运算法则计算即可;
(2)根据积的乘方的运算法则计算即可;
(3)根据幂的乘方的运算法则计算即可;
(3)根据提取公因式法因式分解即可.
【详解】
解:(1);
(2);
(3);
(4).
故答案是:(1);(2);(3);(4).
【点睛】
本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.
2、16
【解析】
【分析】
先提取公因式ab,然后再用完全平方公式因式分解,最后代入计算即可.
【详解】
解:a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2
=1×42
=16.
故答案是16.
【点睛】
本题主要考查了因式分解的应用,掌握运用提取公因式法和完全平方公式因式分解是解答本题的关键.
3、
【解析】
【分析】
把原式化为可得再利用非负数的性质求解从而可得答案.
【详解】
解: ,
而
解得:
故答案为:
【点睛】
本题考查的是非负数的性质,利用完全平方公式的变形求解代数式的值,因式分解的应用,熟练的运用完全平方公式是解本题的关键.
4、
【解析】
【分析】
根据提公因式法因式分解,提公因式因式分解即可
【详解】
解:2m+4mx+2x
故答案为:
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
5、
【解析】
【分析】
提取公因式后,用完全平方公式因式分解即可.
【详解】
原式=
=
故答案为:.
【点睛】
本题考查了因式分解,因式分解是初中数学的重要内容之一.选择正确的分解方法是学好因式分解的关键.因式分解的题目多以填空题或选择题的形式考查提公因式法和公式法的综合运用.因式分解的基本思路是:一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解.如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式.同时,因式分解要彻底,要分解到不能分解为止.因式分解常见技巧:局部不符看整体,整体不符局部,实在不行看变形.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;
(2)根据题中的方法分解因式即可.
【详解】
解:(1);
(2).
【点睛】
本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解.
2、 (1)(x+2)2(x﹣2)2
(2)(a﹣2)(m﹣1)(m+1)
【解析】
【分析】
(1)把(a2﹣3)看作一个整体用完全平方公式因式分解,再用平方差公式因式分解;
(2)先把m2(a﹣2)+(2﹣a)化为m2(a﹣2)﹣(a﹣2)的形式,然后提取公因式,再用平方差公式因式分解.
(1)
解:(1)(x2﹣3)2﹣2(x2﹣3)+1
=(x2﹣3﹣1)2
=(x+2)2(x﹣2)2;
(2)
解:m2(a﹣2)+(2﹣a)
=m2(a﹣2)﹣(a﹣2)
=(a﹣2)(m2﹣1)
=(a﹣2)(m﹣1)(m+1).
【点睛】
本题考查了因式分解,解题根据是熟练运用公式法和提取公因式法进行因式分解.
3、10
【解析】
【分析】
把a3b+ab3分解为ab[(a+b)2-2ab],然后把a+b=-3,ab=2代入计算即可得出答案.
【详解】
解:∵a+b=-3,ab=2,
∴a3b+ab3
=ab(a2+b2)
=ab[(a+b)2-2ab]
=2×[(-3)2-2×2]
=2×(9-4)
=10.
【点睛】
本题考查了分解因式的应用,会把a3b+ab3分解为ab[(a+b)2-2ab]是解决问题的关键.
4、 (1)2a(a2+3b);
(2)5(x+y)(x﹣y);
(3)﹣3(x﹣y)2.
【解析】
【分析】
(1)直接提公因式2a即可;
(2)先提公因式,再利用平方差公式即可;
(3)先提公因式,再利用完全平方公式即可.
(1)
解:=2a(a2+3b);
(2)
解:(2)原式=5(x2﹣y2)
=5(x+y)(x﹣y);
(3)
解:(3)原式=﹣3(x2﹣2xy+y2)
=﹣3(x﹣y)2.
【点睛】
本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.
5、 (1)
(2)
(3)
【解析】
【分析】
(1)首先提取公因式3,再用平方差公式进行二次分解即可;
(2)首先提取公因式x,再用完全平方公式进行二次分解即可;
(3)首先用平方差公式进行分解,再用完全平方公式进行二次分解即可.
(1)
解:;
(2)
解:原式;
(3)
解:原式.
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
初中数学冀教版七年级下册第十一章 因式分解综合与测试课堂检测: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课堂检测,共18页。试卷主要包含了下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试课后测评: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课后测评,共15页。试卷主要包含了下列分解因式正确的是,已知,,求代数式的值为,下列因式分解正确的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试课后作业题: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课后作业题,共16页。试卷主要包含了下列运算错误的是,把多项式分解因式,其结果是,已知,,求代数式的值为,如果x2+kx﹣10=,下列因式分解正确的是等内容,欢迎下载使用。