初中数学冀教版七年级下册第十一章 因式分解综合与测试课时练习
展开冀教版七年级数学下册第十一章 因式分解同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列等式从左到右的变形,属于因式分解的是( )
A. ﹣2x﹣1= B.(a+b)(a﹣b)=
C.﹣4x+4= D.﹣1=
2、下列各式中从左到右的变形,是因式分解的是( )
A. B.
C. D.
3、下列各式从左到右的变形属于因式分解的是( )
A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3y
C.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)
4、下列等式从左到右的变形,属于因式分解的是( )
A. B.
C. D.
5、下列各式从左到右的变形中,是因式分解且完全正确的是( )
A.(x+2)(x﹣2)=x2﹣4 B.x2﹣2x﹣3=x(x﹣2)﹣3
C.x2﹣4x+4=(x﹣2)2 D.x3﹣x=x(x2﹣1)
6、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)
7、下列各式从左到右的变形中,是因式分解的为( )
A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1
C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)
8、下列从左边到右边的变形中,是因式分解的是( )
A. B.
C. D.
9、下列因式分解正确的是( ).
A. B.
C. D.
10、已知a2(b+c)=b2(a+c)=2021,且a、b、c互不相等,则c2(a+b)﹣2020=( )
A.0 B.1 C.2020 D.2021
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:4x2y2﹣2x3y=______.
2、因式分解:5a2﹣45b2=_____.
3、分解因式__________.
4、因式分解:_________.
5、因式分解:______.
三、解答题(5小题,每小题10分,共计50分)
1、如果的三边长满足等式,试判断此的形状并写出你的判断依据.
2、分解因式:.
3、分解因式
(1)(x2﹣3)2﹣2(x2﹣3)+1;
(2)m2(a﹣2)+(2﹣a).
4、(1)计算:(12a3-6a2+3a)÷3a
(2)因式分解:
5、分解因式:
(1);
(2).
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据因式分解的定义和方法逐一判断即可.
【详解】
∵=﹣2x+1≠﹣2x﹣1,
∴A不是因式分解,不符合题意;
∵(a+b)(a﹣b)=不符合因式分解的定义,
∴B不是因式分解,不符合题意;
∵﹣4x+4=,符合因式分解的定义,
∴C是因式分解,符合题意;
∵﹣1≠,不符合因式分解的定义,
∴D不是因式分解,不符合题意;
故选C.
【点睛】
本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.
2、B
【解析】
【分析】
因式分解的结果是几个整式的积的形式.
【详解】
解:A.从左到右的变形是整式乘法,不是因式分解,故本选项不符合题意;
B.从左到右的变形是因式分解,故本选项符合题意;
C. ,故本选项不符合题意;
D.,故本选项不符合题意;
故选:B.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
3、D
【解析】
【分析】
根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.
【详解】
解:A、是整式的乘法,故此选项不符合题意;
B、不属于因式分解,故此选项不符合题意;
C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;
D、把一个多项式转化成几个整式积的形式,故此选项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.
4、B
【解析】
【分析】
根据因式分解的定义直接判断即可.
【详解】
解:A.等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
B.等式从左到右的变形属于因式分解,故本选项符合题意;
C.没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;
D.属于整式乘法,不属于因式分解,故本选项不符合题意;
故答案为:B.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
5、C
【解析】
【分析】
根据因式分解的定义逐项分析即可.
【详解】
A.(x+2)(x﹣2)=x2﹣4是乘法运算,故不符合题意;
B.x2﹣2x﹣3=x(x﹣2)﹣3的右边不是积的形式,故不符合题意;
C.x2﹣4x+4=(x﹣2)2是因式分解,符合题意;
D.x3﹣x=x(x2﹣1)=x(x+1)(x-1),原式分解不彻底,故不符合题意;
故选C.
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
6、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.
7、C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A错误,不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;
C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;
D、等号左右两边式子不相等,故D错误,不符合题意;
故选C
【点睛】
本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.
8、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.是因式分解,故本选项符合题意;
B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意;
C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;
D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
9、C
【解析】
【分析】
根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误.
故选:C.
【点睛】
本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.
10、B
【解析】
【分析】
根据题意先通过已知等式,找到a,b,c的关系再求值即可得出答案.
【详解】
解:∵a2(b+c)=b2(a+c).
∴a2b+a2c﹣ab2﹣b2c=0.
∴ab(a﹣b)+c(a+b)(a﹣b)=0.
∴(a﹣b)(ab+ac+bc)=0.
∵a≠b.
∵a2(b+c)=2021.
∴a(ab+ac)=2021.
∴a(﹣bc)=2021.
∴﹣abc=2021.
∴abc=﹣2021.
∴原式=c(ac+bc)﹣2020=c(﹣ab)﹣2020
=﹣abc﹣2020
=2021﹣2020
=1.
故选:B.
【点睛】
本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是解答本题的关键.
二、填空题
1、2x2y(2y-x)
【解析】
【分析】
直接提取公因式2x2y,进而分解因式即可.
【详解】
解:4x2y2-2x3y=2x2y(2y-x).
故答案为:2x2y(2y-x).
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
2、
【解析】
【分析】
原式提取公因式5,再利用平方差公式分解即可.
【详解】
解:原式=5(a2﹣9b2)
=5(a+3b)(a﹣3b).
故答案为:5(a+3b)(a﹣3b).
【点睛】
此题考查了运用提公因式法和平方差公式分解因式,正确掌握因式分解的方法是解题的关键.
3、
【解析】
【分析】
直接利用提公因式法分解因式即可.
【详解】
解:.
故答案为:.
【点睛】
此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
4、
【解析】
【分析】
原式提取公因式y2,再利用平方差公式分解即可.
【详解】
解:原式==,
故答案为:.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
5、
【解析】
【分析】
先提取公因式,再用完全平方公式分解即可.
【详解】
解:,
=,
=
故答案为:.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解.
三、解答题
1、是等边三角形,理由见解析
【解析】
【分析】
利用因式分解得出三边长的关系,即可判断三角形形状.
【详解】
解:是等边三角形
证明:∵,
∴.
∴,
即,
∴,
∴,即,
∴是等边三角形.
【点睛】
本题考查了因式分解的应用,解题关键是熟练进行因式分解,得出三角形的三边关系.
2、.
【解析】
【分析】
先将因式进行分组为,再综合利用提公因式法和平方差公式分解因式即可得.
【详解】
解:原式
.
【点睛】
本题考查了因式分解,熟练掌握因式分解的方法是解题关键.
3、 (1)(x+2)2(x﹣2)2
(2)(a﹣2)(m﹣1)(m+1)
【解析】
【分析】
(1)把(a2﹣3)看作一个整体用完全平方公式因式分解,再用平方差公式因式分解;
(2)先把m2(a﹣2)+(2﹣a)化为m2(a﹣2)﹣(a﹣2)的形式,然后提取公因式,再用平方差公式因式分解.
(1)
解:(1)(x2﹣3)2﹣2(x2﹣3)+1
=(x2﹣3﹣1)2
=(x+2)2(x﹣2)2;
(2)
解:m2(a﹣2)+(2﹣a)
=m2(a﹣2)﹣(a﹣2)
=(a﹣2)(m2﹣1)
=(a﹣2)(m﹣1)(m+1).
【点睛】
本题考查了因式分解,解题根据是熟练运用公式法和提取公因式法进行因式分解.
4、(1)4a2-2a+1;(2)2a(a-2)2.
【解析】
【分析】
(1)根据多项式除以单项式的法则进行计算即可;
(2)先提公因式,再根据完全平方公式进行因式分解即可.
【详解】
解(1)(12a3-6a2+3a)÷3a
=4a2-2a+1;
(2)
=2a(a2-4a+4)
=2a(a-2)2.
【点睛】
本题考查了整式的除法,以及因式分解法,掌握运算法则和完全平方公式是解题的关键.
5、(1);(2)
【解析】
【分析】
(1)先提公因数3,再利用完全平方公式公式分解因式即可;
(2)先提公因式(m-2),再利用平方差公式分解因式即可.
【详解】
解:(1)
=
=;
(2)
=
=.
【点睛】
本题考查因式分解、完全平方公式、平方差公式,熟记公式,熟练掌握因式分解的方法是解答的关键.
冀教版七年级下册第十一章 因式分解综合与测试同步练习题: 这是一份冀教版七年级下册第十一章 因式分解综合与测试同步练习题,共18页。试卷主要包含了下列因式分解正确的是,已知,,那么的值为,下列多项式等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试课后作业题: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课后作业题,共16页。试卷主要包含了下列运算错误的是,把多项式分解因式,其结果是,已知,,求代数式的值为,如果x2+kx﹣10=,下列因式分解正确的是等内容,欢迎下载使用。
冀教版七年级下册第十一章 因式分解综合与测试达标测试: 这是一份冀教版七年级下册第十一章 因式分解综合与测试达标测试,共17页。试卷主要包含了已知实数x,y满足,已知,,那么的值为,已知a2等内容,欢迎下载使用。