![三角形的中位线练习题(2)第1页](http://img-preview.51jiaoxi.com/2/3/12719632/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![三角形的中位线练习题(2)第2页](http://img-preview.51jiaoxi.com/2/3/12719632/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![三角形的中位线练习题(2)第3页](http://img-preview.51jiaoxi.com/2/3/12719632/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湘教版八年级下册第2章 四边形2.4 三角形的中位线课后练习题
展开
这是一份湘教版八年级下册第2章 四边形2.4 三角形的中位线课后练习题,共12页。试卷主要包含了选择题,填空题,计算题等内容,欢迎下载使用。
2.4 三角形的中位线一、选择题(本大题共8小题)1. 如图,DE是△ABC的中位线,则△ABC与△ADE的周长的比是 ( ) A.1:2 B.2:1 C.1:3 D.3:1 第1题图 第2题图 第3题图2. 如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为( )A.1 B.2 C. D.1+3. 如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是( )A.EF=CF B.EF=DE C.CF<BD D.EF>DE4. 一个三角形的周长是36 cm,则以这个三角形各边中点为顶点的三角形的周长是 ( ) A.6 cm B.12 cm C.18 cm D.36 cm5. 如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )A.7 B.8 C.9 D.10 第5题图 第6题图如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为( )A.6 B.5 C.4 D.37. 如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为( )A.4 B.8 C.2 D.4 第7题图 第8题图 第9题图8. 在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是( )A.5 B.7 C.9 D.11二、填空题(本大题共6小题)9. 如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE= .10. 如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为 m. 第10题图 第11题图 第12题图11. 如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF= cm.12. 如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= .13. 如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是 . 第13题图 第14题图14. 如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于 cm.三、计算题(本大题共4小题)15. 如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长. 16. 如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF. 17. 如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC). 18. 如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 参考答案:一、选择题(本大题共8小题)1. B分析:根据三角形中位线定理解答即可。解:已知DE是△ABC的中位线,所以D,E分别是AB和AC的中点,根据中位线定理可知△ADE的每一条边都是△ABC的对应边的一半,那么周长也应该是△ABC的一半。故选B.2. A分析:由“30度角所对的直角边等于斜边的一半”求得AB=2BC=2.然后根据三角形中位线定理求得DE=AB.解:如图,∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2.又∵点D、E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=AB=1.故选:A.3.B分析:首先根据三角形的中位线定理得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.解:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵,∴△ADE≌△CFE(AAS),∴DE=FE.故选B.4. 解: 如图,点D、E、F分别是AB、AC、BC的中点,∴DE= BC,DF= AC,EF= AB,∵原三角形的周长为36,则新三角形的周长为=18.故答案为:18.5. B分析:根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.6. D分析:在Rt△ACB中,根据勾股定理求得BC边的长度,然后由三角形中位线定理知DE=BC.解:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB于点E,∴DE是△ACB的中位线,∴DE=BC=3.故选:D.7.D分析:先利用直角三角形斜边中线性质求出AB,再在RT△ABF中,利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.解:在RT△ABF中,∵∠AFB=90°,AD=DB,DF=4,∴AB=2DF=8,∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠ABF=30°,∴AF=AB=4,∴BF===4.故选D.8. B分析:先根据三角形中位线性质得DF=BC=2,DF∥BC,EF=AB=,EF∥AB,则可判断四边形DBEF为平行四边形,然后计算平行四边形的周长即可.解:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.二、填空题(本大题共6小题)9. 分析:根据三角形的中位线定理得到DE=BC,即可得到答案.解:∵D、E分别是边AB、AC的中点,BC=8,∴DE=BC=4.故答案为:4.10. 分析:根据题意知MN是△ABO的中位线,所以由三角形中位线定理来求AB的长度即可.解:∵点M、N是OA、OB的中点,∴MN是△ABO的中位线,∴AB=AMN.又∵MN=20m,∴AB=40m.故答案是:40.11. 分析:已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:512. 分析:连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.13. 分析:延长线段BN交AC于E,从而构造出全等三角形,(△ABN≌△AEN),进而证明MN是中位线,从而求出CE的长.解:延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN,∴AE=AB=6,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×1.5=3,∴△ABC的周长是AB+BC+AC=6+10+6+3=25。14.分析:首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.解:∵BD=AD,BE=EC,∴DE=AC=4cm,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=3cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=14cm.故答案为14.三、计算题(本大题共4小题)15. 分析:(1)作线段AC的垂直平分线即可.(2)根据三角形中位线定理即可解决.解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.(2)∵AD=DB,AE=EC,∴DE∥BC,DE=BC,∵DE=4,∴BC=8.16.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.17.分析:(1)欲证明AE=AF,只要证明∠AEF=∠AFE即可.(2)作CG∥EM,交BA的延长线于G,先证明AC=AG,再证明BE=EG即可解决问题.证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵BM=CM.EM∥CG,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).18. 分析:(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.解:(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=
相关试卷
这是一份初中数学北师大版八年级下册3 三角形的中位线同步测试题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版八年级下册3 三角形的中位线同步训练题,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份苏科版八年级下册9.5 三角形的中位线课后练习题,共3页。试卷主要包含了已知等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)