初中第十一章 因式分解综合与测试课时训练
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,,求代数式的值为( )
A.18B.28C.50D.60
2、下列各式从左到右的变形中,属于因式分解的是( )
A.B.
C.D.
3、下列各式中,不能因式分解的是( )
A.4x2﹣4x+1B.x2﹣4y2
C.x3﹣2x2y+xy2D.x2+y2+x2y2
4、分解因式2a2(x-y)+2b2(y-x)的结果是( )
A.(2a2+2b2) (x-y)B.(2a2-2b2) (x-y)
C.2(a2-b2) (x-y)D.2(a-b)(a+b)(x-y)
5、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2D.x4-y4=(x2+y2)(x2-y2)
6、把多项式a2﹣9a分解因式,结果正确的是( )
A.a(a+3)(a﹣3)B.a(a﹣9)
C.(a﹣3)2D.(a+3)(a﹣3)
7、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )
A.2个B.3个C.4个D.5个
8、已知实数x,y满足:x2−+2=0,y2−+2=0,则2022|x−y|的值为( )
A.B.1C.2022D.
9、下列从左到右的变形属于因式分解的是( )
A.x2+2x+1=x(x+2)+1B.﹣7ab2c3=﹣abc•7bc2
C.m(m+3)=m2+3mD.2x2﹣5x=x(2x﹣5)
10、下列等式中,从左往右的变形为因式分解的是( )
A.a2﹣a﹣1=a(a﹣1﹣)
B.(a﹣b)(a+b)=a2﹣b2
C.m2﹣m﹣1=m(m﹣1)﹣1
D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:__________.
2、因式分解:______.
3、分解因式:9a﹣=______________.
4、要使多项式x2﹣ax﹣20在整数范围内可因式分解,给出整数a=____________.
5、因式分解:______.
三、解答题(5小题,每小题10分,共计50分)
1、问题提出:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6
问题探究:为便于研究发现规律,我们可以将问题“一般化”,即将算式中特殊的数字3用具有一般性的字母a代替,原算式化为:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4+a(1+a)5+a(1+a)6
然后我们再从最简单的情形入手,从中发现规律,找到解决问题的方法:
(1)仿照②,写出将1+a+a(1+a)+a(1+a)2+a(1+a)3进行因式分解的过程;
(2)填空:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4= ;
发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n= ;
问题解决:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6= (结果用乘方表示).
2、因式分解:
(1)4x4+4x3+x2;
(2)(2m+3)2﹣m2.
3、因式分解:(x2+9)2﹣36x2.
4、因式分解:
(1)
(2)
(3)
5、分解因式
(1)(x2﹣3)2﹣2(x2﹣3)+1;
(2)m2(a﹣2)+(2﹣a).
-参考答案-
一、单选题
1、A
【解析】
【分析】
先利用提公因式法和完全平方公式对所求代数式因式分解,再整体代入求值即可.
【详解】
解:
=
=,
当,时,
原式=2×32=2×9=18,
故选:A.
【点睛】
本题考查代数式求值、因式分解、完全平方公式,熟记公式,熟练掌握因式分解的方法是解答的关键.
2、B
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:、是单项式的乘法,不是因式分解,故本选项不符合题意;
、是因式分解,利用了完全平方差公式进行了因式分解,故本选项符合题意;
、是整式的乘法,不是因式分解,故本选项不符合题意;
、因式分解错误,故本选项不符合题意;
故选:B.
【点睛】
本题考查了因式分解的定义,解题的关键是能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
3、D
【解析】
【分析】
直接利用公式法以及提取公因式分解因式进而判断即可.
【详解】
解:A、4x2﹣4x+1=(2x−1)2,故本选项不合题意;
B、x2﹣4y2=(x+2y)(x-2y),故本选项不合题意;
C、x3﹣2x2y+xy2=x(x-y)2,故本选项不合题意;
D、x2+y2+x2y2不能因式分解,故本选项符合题意;
故选:D.
【点睛】
此题主要考查了提取公因法以及公式法分解因式,正确应用公式法分解因式是解题关键.
4、D
【解析】
【分析】
根据提公因式法和平方差公式分解因式.
【详解】
解:2a2(x-y)+2b2(y-x)
=2a2(x-y)-2b2(x-y)
=(2a2-2b2)(x-y)
=2(a2-b2)(x-y)
=2(a-b)(a+b)(x-y).
故选:D.
【点睛】
此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.
5、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.
6、B
【解析】
【分析】
用提公因式法,提取公因式即可求解.
【详解】
解:a2﹣9a=a(a﹣9).
故选:B.
【点睛】
本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.
7、B
【解析】
【分析】
平方差公式:,根据平方差公式逐一分析可得答案.
【详解】
解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;
x2-y2能用平方差公式分解因式,故(2)符合题意;
-m2+n2能用平方差公式分解因式,故(3)符合题意;
-b2-a2不能用平方差公式分解因式,故(4)不符合题意;
-a6+4能用平方差公式分解因式,故(5)符合题意;
所以能用平方差公式分解的因式有3个,
故选B
【点睛】
本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.
8、B
【解析】
【分析】
利用偶次方的非负性得到x>0,y>0,两式相减,可求得x-y=0,据此即可求解.
【详解】
解:∵x2−+2=0①,y2−+2=0②,
∴x2+2=,y2+2=,
∵x2+20,y2+20,
∴x>0,y>0,
①-②得:x2−-y2+=0,
整理得:(x-y)(x+y+)=0,
∵x>0,y>0,
∴x+y+>0,
∴x-y=0,
∴2022|x−y|=20220=1,
故选:B.
【点睛】
本题考查了因式分解的应用,非负性的应用,由偶次方的非负性得到x>0,y>0是解题的关键.
9、D
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.由定义判断即可.
【详解】
解:A.x2+2x+1=(x+1)2,故A不符合题意;
B.-7ab2c3是单项式,不存在因式分解,故B不符合题意;
C.m(m+3)=m2+3m是单项式乘多项式,故C不符合题意;
D.2x2-5x=x(2x-5)是因式分解,故D符合题意;
故选:D.
【点睛】
本题考查因式分解的意义,熟练掌握因式分解的定义,能够根据所给形式判断是否符合因式分解的变形是解题的关键.
10、D
【解析】
【分析】
把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.
【详解】
A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;
B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;
C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;
D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.
故选D.
【点睛】
本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.
二、填空题
1、
【解析】
【分析】
没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方公式进行因式分解.
【详解】
解:,
故答案为:.
【点睛】
本题主要考查利用完全平方公式分解因式,熟记公式结构是解题的关键.
2、
【解析】
【分析】
先提公因式,再利用平方差公式即可;
【详解】
故答案为:.
【点睛】
本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.
3、a(3+a)(3﹣a)
【解析】
【分析】
先提取公因式a,再对余下的多项式利用平方差公式继续分解.
【详解】
解:9a﹣,
=a (9﹣),
=a(3+a)(3﹣a).
【点睛】
本题考查了因式分解,熟练掌握先提后选用公式的解题思路是解题的关键.
4、±1或±19或±8
【解析】
【分析】
把﹣20分成20和﹣1,﹣2和10,5和﹣4,﹣5和4,2和﹣10,﹣20和1,进而得出即原式分解为(x+20)(x﹣1),(x﹣2)(x+10),(x+5)(x﹣4),(x﹣5)(x+4),(x+2)(x﹣10),(x﹣20)(x+1),即可得到答案.
【详解】
解:当x2﹣ax﹣20=(x+20)(x﹣1)时,a=20+(﹣1)=19,
当x2﹣ax﹣20=(x﹣2)(x+10)时,a=﹣2+10=8,
当x2﹣ax﹣20=(x+5)(x﹣4)时,a=5+(﹣4)=1,
当x2﹣ax﹣20=(x﹣5)(x+4)时,a=﹣5+4=﹣1,
当x2﹣ax﹣20=(x+2)(x﹣10)时,a=2+(﹣10)=﹣8,
当x2﹣ax﹣20=(x﹣20)(x+1)时,a=﹣20+1=﹣19,
综上所述:整数a的值为±1或±19或±8.
故答案为:±1或±19或±8.
【点睛】
本题主要考查对因式分解−十字相乘法的理解和掌握,理解x2+(a+b)x+ab=(x+a)(x+b)是解此题的关键.
5、
【解析】
【分析】
直接提取公因式,再利用完全平方公式分解因式得出答案.
【详解】
解:原式
.
故答案为:.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.
三、解答题
1、 (1)(1+a)4
(2)(1+a)5;(1+a)n+1;47
【解析】
【分析】
(1)用提取公因式(1+a)一步步分解因式,最后化为积的形式;
(2)通过前面(1)的例子,用提取公因式法(1+a)一步步分解因式,最后化为积的形式,
发现规律:是根据(1)(2)的结果写出结论;
问题解决:通过前面的例子,用提取公因式法(1+3)一步步分解因式,最后化为积的形式.
(1)
解:1+a+a(1+a)+a(1+a)2+a(1+a)3
=(1+a)(1+a)+a(1+a)2+a(1+a)3
=(1+a)2(1+a)+a(1+a)3
=(1+a)3+a(1+a)3
=(1+a)3(1+a)
=(1+a)4;
(2)
解:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4
=(1+a)(1+a)+a(1+a)2+a(1+a)3+a(1+a)4
=(1+a)2(1+a)+a(1+a)3+a(1+a)4
=(1+a)3+a(1+a)3+a(1+a)4
=(1+a)3(1+a)+a(1+a)4
=(1+a)4+a(1+a)4
=(1+a)4(1+a)
=(1+a)5;
故答案为:(1+a)5;
发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n=(1+a)n+1;
故答案为:(1+a)n+1;
问题解决:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6
=(1+3)(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6
=(1+3)2(1+3)+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6
=(1+3)3(1+3)+3(1+3)4+3(1+3)5+3(1+3)6
=(1+3)4(1+3)+3(1+3)5+3(1+3)6
=(1+3)5(1+3)+3(1+3)6
=(1+3)6(1+3)
=(1+3)7
=47.
故答案为:47.
【点睛】
此题考查了数字类运算的规律,提公因式法分解因式,整式的混合运算法则,正确掌握提公因式法分解因式是解题的关键,同时还考查了类比解题的思想.
2、 (1)x2(2x+1)2
(2)
【解析】
【分析】
(1)先提取公因式,然后再运用完全平方公式法因式分解即可;
(2)运用平方差公式因式分解即可.
(1)
解:4x4+4x3+x2
= x2(4x2+4x+1)
=x2(2x+1)2.
(2)
解:(2m+3)2﹣m2
=(2m+3+m)(2m+3-m)
=(3m+3)(m+3)
=.
【点睛】
本题主要考查了因式分解,掌握提取公因式法和公式法因式分解是解答本题的关键.
3、
【解析】
【分析】
利用平方差公式和完全平方公式分解因式即可.
【详解】
解:
.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式.
4、(1);(2);(3)
【解析】
【分析】
(1)利用提取公式法因式分解即可;
(2)利用提取公式法因式分解即可;
(3)提取公因式2y,在利用完全平方公式因式分解即可.
【详解】
解:(1);
(2)
(3)
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
5、 (1)(x+2)2(x﹣2)2
(2)(a﹣2)(m﹣1)(m+1)
【解析】
【分析】
(1)把(a2﹣3)看作一个整体用完全平方公式因式分解,再用平方差公式因式分解;
(2)先把m2(a﹣2)+(2﹣a)化为m2(a﹣2)﹣(a﹣2)的形式,然后提取公因式,再用平方差公式因式分解.
(1)
解:(1)(x2﹣3)2﹣2(x2﹣3)+1
=(x2﹣3﹣1)2
=(x+2)2(x﹣2)2;
(2)
解:m2(a﹣2)+(2﹣a)
=m2(a﹣2)﹣(a﹣2)
=(a﹣2)(m2﹣1)
=(a﹣2)(m﹣1)(m+1).
【点睛】
本题考查了因式分解,解题根据是熟练运用公式法和提取公因式法进行因式分解.
初中数学冀教版七年级下册第十一章 因式分解综合与测试练习题: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试练习题,共16页。试卷主要包含了如果x2+kx﹣10=,多项式分解因式的结果是,当n为自然数时,,对于有理数a,b,c,有等内容,欢迎下载使用。
冀教版七年级下册第十一章 因式分解综合与测试精练: 这是一份冀教版七年级下册第十一章 因式分解综合与测试精练,共17页。试卷主要包含了已知实数x,y满足,计算的值是,下列各式从左至右是因式分解的是,如果x2+kx﹣10=,若a2=b+2,b2=a+2,等内容,欢迎下载使用。
数学七年级下册第十一章 因式分解综合与测试复习练习题: 这是一份数学七年级下册第十一章 因式分解综合与测试复习练习题,共17页。试卷主要包含了下列因式分解正确的是,多项式分解因式的结果是等内容,欢迎下载使用。