冀教版七年级下册第十一章 因式分解综合与测试同步训练题
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试同步训练题,共18页。试卷主要包含了如果x2+kx﹣10=,下列因式分解正确的是,已知a2,计算的值是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列等式从左到右的变形是因式分解的是( )
A.B.
C.D.
2、分解因式2a2(x-y)+2b2(y-x)的结果是( )
A.(2a2+2b2) (x-y)B.(2a2-2b2) (x-y)
C.2(a2-b2) (x-y)D.2(a-b)(a+b)(x-y)
3、下列各式从左到右的变形中,是因式分解的为( )
A.x(a﹣b)=ax﹣bxB.x2﹣3x+1=x(x﹣3)+1
C.x2﹣4=(x+2)(x﹣2)D.m+1=x(1+)
4、如果x2+kx﹣10=(x﹣5)(x+2),则k应为( )
A.﹣3B.3C.7D.﹣7
5、下列从左边到右边的变形,属于因式分解的是( )
A.B.
C.D.
6、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2D.x4-y4=(x2+y2)(x2-y2)
7、已知a2(b+c)=b2(a+c)=2021,且a、b、c互不相等,则c2(a+b)﹣2020=( )
A.0B.1C.2020D.2021
8、计算的值是( )
A.B.C.D.2
9、下列等式中,从左到右的变形是因式分解的是( )
A.B.
C.D.
10、因式分解a2b﹣2ab+b正确的是( )
A.b(a2﹣2a)B.ab(a﹣2)C.b(a2﹣2a+1)D.b(a﹣1)2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,,则________.
2、分解因式:______.
3、把多项式x2﹣6x+m分解因式得(x+3)(x﹣n),则m+n的值是______.
4、分解因式:=_______.
5、分解因式:________.
三、解答题(5小题,每小题10分,共计50分)
1、阅读下面材料:小颖这学期学习了轴对称的知识,知道了像角、等腰三角形、正方形、圆等图形都是轴对称图形,类比这一特性,小颖发现像等代数式,如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是她把这样的式子命名为神奇对称式,她还发现像等神奇对称式都可以用表示.例如:,.于是小颖把和称为基本神奇对称式,请根据以上材料解决下列问题:
(1)①,②,③,④中,属于神奇对称式的是_______(填序号);
(2)已知.
①若,则神奇对称式_______;
②若,求神奇对称式的最小值.
2、将下列各式分解因式:
(1); (2)
3、阅读下列材料:
材料一:对于一个百位数字不为0的四位自然数,以它的百位数字作为十位,十位数字作为个位,得到一个两位数,若等于的千位数字与个位数字的平方差,则称数为“平方差数”.
例如:7136是“平方差数”,因为,所以7136是“平方差数”;
又如:4251不是“平方差数”,因为,所以4251不是“平方差数”.
材料二:我们有时可以利用分解因数的方法解决求整数解的问题,例如:若,为两个正整数(),且,则,为18的正因数,又因为18可以分解为或或,所以方程的正整数解为或或.
根据上述材料解决问题:
(1)判断9810,6361是否是“平方差数”?并说明理由;
(2)若一个四位“平方差数”,将它的千位数字、个位数字及相加,其和为30,求所有满足条件的“平方差数”.
4、计算:
(1)计算:(2a)3•b4÷4a3b2;
(2)计算:(a﹣2b+1)2;
(3)分解因式:(a﹣2b)2﹣(3a﹣2b)2.
5、因式分解:
(1);
(2).
-参考答案-
一、单选题
1、A
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.
【详解】
解:A.把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;
B.等式的左边不是多项式,原变形不是因式分解,故此选项不符合题意;
C.不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意;
D.原变形是整式的乘法,不是因式分解,故此选项不符合题意;
故选:A
【点睛】
本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.
2、D
【解析】
【分析】
根据提公因式法和平方差公式分解因式.
【详解】
解:2a2(x-y)+2b2(y-x)
=2a2(x-y)-2b2(x-y)
=(2a2-2b2)(x-y)
=2(a2-b2)(x-y)
=2(a-b)(a+b)(x-y).
故选:D.
【点睛】
此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.
3、C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A错误,不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;
C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;
D、等号左右两边式子不相等,故D错误,不符合题意;
故选C
【点睛】
本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.
4、A
【解析】
【分析】
根据多项式乘以多项式把等号右边展开,即可得答案.
【详解】
解:(x-5)(x+2)=x2-3x-10,
则k=-3,
故选:A.
【点睛】
本题主要考查了因式分解,关键是掌握x2+(p+q)x+pq=(x+p)(x+q).
5、D
【解析】
【分析】
根据因式分解的定义(把一个多项式化为几个整式的积的形式),平方差公式、完全平方公式,提公因式法依次进行因式分解判断即可得.
【详解】
解:A、选项为整式的乘法;
B、,选项错误;
C、,选项错误;
D、选项正确;
故选:D.
【点睛】
题目主要考查因式分解的定义及方法,熟练掌握利用公式因式分解是解题关键.
6、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.
7、B
【解析】
【分析】
根据题意先通过已知等式,找到a,b,c的关系再求值即可得出答案.
【详解】
解:∵a2(b+c)=b2(a+c).
∴a2b+a2c﹣ab2﹣b2c=0.
∴ab(a﹣b)+c(a+b)(a﹣b)=0.
∴(a﹣b)(ab+ac+bc)=0.
∵a≠b.
∵a2(b+c)=2021.
∴a(ab+ac)=2021.
∴a(﹣bc)=2021.
∴﹣abc=2021.
∴abc=﹣2021.
∴原式=c(ac+bc)﹣2020=c(﹣ab)﹣2020
=﹣abc﹣2020
=2021﹣2020
=1.
故选:B.
【点睛】
本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是解答本题的关键.
8、B
【解析】
【分析】
直接找出公因式进而提取公因式,进行分解因式即可.
【详解】
解:.
故选:B
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
9、D
【解析】
【分析】
根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.
【详解】
解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;
B、是整式的乘法运算,不是因式分解,则此项不符题意;
C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;
D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.
10、D
【解析】
【分析】
先提取公因式,再用完全平方公式分解因式即可.
【详解】
解:a2b﹣2ab+b
=b(a2﹣2a+1)
=b(a﹣1)2.
故选:D.
【点睛】
本题考查的是因式分解,掌握“提公因式与公式法分解因式”是解本题的关键. 注意分解因式要彻底.
二、填空题
1、-3
【解析】
【分析】
将多项式因式分解后,整体代入即可.
【详解】
解:∵,,
∴,
故答案为:-3.
【点睛】
本题主要考查了提取公因式法分解因式,代数式求值,正确提取公因式是解题关键.
2、
【解析】
【分析】
首先提公因式3x,然后利用完全平方公式因式分解即可分解.
【详解】
解:.
故答案为:.
【点睛】
本题考查了提公因式法与公式法分解因式,掌握因式分解的方法与步骤,熟记公式是解题关键.
3、-18
【解析】
【分析】
根据题意列出等式,利用多项式相等的条件求出m与n的值,代入原式计算即可求出值.
【详解】
解:根据题意得:x2-6x+m=(x+3)(x-n)=x2+(3-n)x-3n,
∴3-n=-6,m=-3n,
解得:m=-27,n=9,
则原式=-27+9=-18,
故答案为:-18.
【点睛】
此题考查了因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键.
4、
【解析】
【分析】
两次利用平方差公式即可解决.
【详解】
故答案为:
【点睛】
本题考查了用平方差公式分解因式,注意因式分解要分解到再也不能分解为止.
5、(2a+3b)(y﹣z)
【解析】
【分析】
先调整符号,然后提公因式即可.
【详解】
解:,
=,
=.
故答案为.
【点睛】
本题考查提公因式法因式分解,掌握因式分解的方法是解题关键.
三、解答题
1、 (1)①④
(2)①;②
【解析】
【分析】
(1)神奇对称式是指任意交换两个字母的位置,式子的值都不变的代数式;由定义可知,交换①②③中④中、、的位置,若值不变则符合题意.
(2)①将代入中求得的值,代入求解即可.②将代入中求得的值,由求出的取值范围;将进行配方得将的最小值代入即可.
(1)
解:将①②③中交换位置可得
①,符合题意;
②,不符合题意;
③,不符合题意;
④交换的位置,同理交换其他两个仍成立,符合题意;
故答案为:①④.
(2)
解:①
或
代入得
故答案为:.
②,
有
或
∴神奇对称式的最小值为.
【点睛】
本题考查了因式分解,完全平方公式,不等式等知识.解题的关键在于因式分解得到m、n的关系,不等式求出代数式m+n的取值范围,配完全平方表示出所求代数式的形式.
2、(1);(2)
【解析】
【分析】
(1)首先提取公因式-6,再利用完全平方公式继续分解即可;
(2)首先提取公因式3ab,再利用平方差进行分解即可.
【详解】
解:(1)
=
=;
(2)
=
=.
【点睛】
本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.
3、 (1)9810是“平方差数”,6361不是“平方差数”,理由见解析
(2)8157或6204或5250或5241
【解析】
【分析】
(1)直接根据“平方差数”的概念求解即可;
(2)设的千位数字为,个位数字为,则,由题意得,再分解正因数求解即可.
(1)
9810是“平方差数”,
∵,
∴9810是“平方差数”;
6361不是“平方差数”,
∵,
∴6361不是“平方差数”.
(2)
设的千位数字为,个位数字为,则,
由题意得,
即.
∵,且均为30的正因数,
∴将30分解为或或.
①,
解得,即;
②,
解得,即;
③,
解得,即;
解得,即.
∴或6204或5250或5241
【点睛】
本题考查了因式分解的应用,新定义下的阅读理解,解决问题的关键是找到等量关系.
4、(1)2b2;(2)a2﹣4ab+4b2+2a﹣4b+1;(3)﹣8a(a﹣b).
【解析】
【分析】
(1)先计算乘方,再计算除法可得;
(2)利用完全平方公式计算可得;
(3)先提公因式,再利用平方差分解可得.
【详解】
(1)原式=8a3•b4÷4a3b2
=8a3b4÷4a3b2
=2b2;
(2)原式=[(a﹣2b)+1]2
=(a﹣2b)2+2(a﹣2b)+12
=a2﹣4ab+4b2+2a﹣4b+1;
(3)原式=[(a﹣2b)+(3a﹣2b)]•[(a﹣2b)﹣(3a﹣2b)]
=(4a﹣4b)•(﹣2a)
=﹣8a(a﹣b).
【点睛】
本题主要考查整式的混合运算、完全平方公式和因式分解的能力,掌握基本运算是解题的关键.
5、 (1)
(2)
【解析】
【分析】
(1)先提公因式,再逆用平方差公式进行因式分解;
(2)先提公因式,再逆用完全平方公式进行因式分解.
(1)
解:;
(2)
解:.
【点睛】
本题主要考查综合运用公式法、提公因式法进行因式分解,熟练掌握提公因式法、公式法是解决本题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试综合训练题,共18页。试卷主要包含了若a2=b+2,b2=a+2,,已知c<a<b<0,若M=|a,当n为自然数时,等内容,欢迎下载使用。
这是一份初中冀教版第十一章 因式分解综合与测试综合训练题,共17页。试卷主要包含了下列运算错误的是,下列因式分解正确的是.,下列多项式中有因式x﹣1的是,若a,把代数式分解因式,正确的结果是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试达标测试,共15页。试卷主要包含了把多项式分解因式,其结果是,当n为自然数时,等内容,欢迎下载使用。