冀教版七年级下册第十一章 因式分解综合与测试课时练习
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试课时练习,共18页。试卷主要包含了因式分解,下列变形,属因式分解的是,多项式分解因式的结果是,若a2=b+2,b2=a+2,等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式从左到右的变形中,是因式分解且完全正确的是( )A.(x+2)(x﹣2)=x2﹣4 B.x2﹣2x﹣3=x(x﹣2)﹣3C.x2﹣4x+4=(x﹣2)2 D.x3﹣x=x(x2﹣1)2、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是( )A.a(m+n)+b(m+n)=(a+b)(m+n)B.m(a+b)+n(a+b)=(a+b)(m+n)C.am+bm+an+bn=(a+b)(m+n)D.ab+mn+am+bn=(a+b)(m+n)3、下列多项式能使用平方差公式进行因式分解的是( )A. B. C. D.4、因式分解:x3﹣4x2+4x=( )A. B. C. D.5、下列变形,属因式分解的是( )A. B.C. D.6、多项式分解因式的结果是( )A. B.C. D.7、下列各式由左边到右边的变形中,是因式分解的是( )A.10x2﹣5x=5x(2x﹣1) B.x2﹣4x+4=x(x﹣4)+4C.a(x+y)=ax+ay D.x2﹣16+3x=(x+4)(x﹣4)+3x8、下列从左到右的变形属于因式分解的是( )A.x2+2x+1=x(x+2)+1 B.﹣7ab2c3=﹣abc•7bc2C.m(m+3)=m2+3m D.2x2﹣5x=x(2x﹣5)9、若a2=b+2,b2=a+2,(a≠b)则a2﹣b2﹣2b+2的值为( )A.﹣1 B.0 C.1 D.310、已知a2(b+c)=b2(a+c)=2021,且a、b、c互不相等,则c2(a+b)﹣2020=( )A.0 B.1 C.2020 D.2021第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:______.2、分解因式:9a﹣=______________.3、在实数范围内分解因式﹣64=___.4、分解因式:______.5、因式分解:________.三、解答题(5小题,每小题10分,共计50分)1、已知,求的值.2、分解因式:.3、材料1:对于任意一个各个数位上的数字均不相等且均不为零的三位自然数,重新排列各个数位上的数字可得到一个最大数和一个最小数,规定.例如,.材料2:对于一个各个数位上的数字均不相等的三位自然数,若的十位数字分别小于的百位数字与个位数字,则称为凹数.例如,因为,,所以是凹数.(1)填空: ;(2)判断是否是凹数,并说明理由;(3)若三位自然数(其中,,,、、均为整数)是凹数,且的百位数字大于个位数字,,求满足条件的所有三位自然数的值.4、(1)运用乘法公式计算:;(2)分解因式:.5、我们知道,任意一个正整数c都可以进行这样的分解:c=a×b(.b是正整数,且a≤b),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称a×b是c的最优分解并规定:M(c)=,例如9可以分解成1×9,3×3,因为9-1>3-3,所以3×3是9的最优分解,所以M(9)==1(1)求M(8);M(24);M[(c+1)2]的值;(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1≤x≤y≤9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值. -参考答案-一、单选题1、C【解析】【分析】根据因式分解的定义逐项分析即可.【详解】A.(x+2)(x﹣2)=x2﹣4是乘法运算,故不符合题意;B.x2﹣2x﹣3=x(x﹣2)﹣3的右边不是积的形式,故不符合题意;C.x2﹣4x+4=(x﹣2)2是因式分解,符合题意;D.x3﹣x=x(x2﹣1)=x(x+1)(x-1),原式分解不彻底,故不符合题意;故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.2、D【解析】【分析】由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可【详解】解:如图②,S长方形ABCD=(a+b)(m+n),A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;故选:D.【点睛】本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.3、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.【详解】解:A、,不能进行因式分解,不符合题意;B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).4、A【解析】【分析】根据因式分解的解题步骤,“一提、二套、三查”,进行分析,首先将整式进行提公因式,变为:,之后套公式变为:,即可得出对应答案.【详解】解:原式==故选:A.【点睛】本题考查的是因式分解的基础应用,熟练掌握因式分解的一般解题步骤,以及各种因式分解的方法是解题的关键.5、A【解析】【分析】依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.【详解】解:A、是因式分解,故此选项符合题意;B、分解错误,故此选项不符合题意;C、右边不是几个整式的积的形式,故此选项不符合题意;D、分解错误,故此选项不符合题意;故选:A.【点睛】本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.6、B【解析】【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y).故选:B.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.7、A【解析】【详解】因式分解就是把多项式分解成整式的积的形式,依据定义即可判断.【分析】解:A、正确;B、结果不是整式的积的形式,故不是因式分解,选项错误;C、结果不是整式的积的形式,故不是因式分解,选项错误;D、结果不是整式的积的形式,故不是因式分解,选项错误.故选:A.【点睛】本题考查了因式分解的定义,理解因式分解的结过是整式的积的形式是解题的关键.8、D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.由定义判断即可.【详解】解:A.x2+2x+1=(x+1)2,故A不符合题意;B.-7ab2c3是单项式,不存在因式分解,故B不符合题意;C.m(m+3)=m2+3m是单项式乘多项式,故C不符合题意;D.2x2-5x=x(2x-5)是因式分解,故D符合题意;故选:D.【点睛】本题考查因式分解的意义,熟练掌握因式分解的定义,能够根据所给形式判断是否符合因式分解的变形是解题的关键.9、D【解析】【分析】由a2=b+2,b2=a+2,且a≠b,可得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2,再代入计算即可求解.【详解】解:∵a2=b+2,b2=a+2,且a≠b,∴a2−b2=b−a,即(a+b)(a-b)=b-a,∴a+b=−1,∴a2-b2-2b+2=(a+b)(a-b)−2b+2=b−a-2b+2=-(a+b)+2=1+2=3.故选:D.【点睛】本题考查了代数式求值,解题的关键是求得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2是解题的关键.10、B【解析】【分析】根据题意先通过已知等式,找到a,b,c的关系再求值即可得出答案.【详解】解:∵a2(b+c)=b2(a+c).∴a2b+a2c﹣ab2﹣b2c=0.∴ab(a﹣b)+c(a+b)(a﹣b)=0.∴(a﹣b)(ab+ac+bc)=0.∵a≠b.∵a2(b+c)=2021.∴a(ab+ac)=2021.∴a(﹣bc)=2021.∴﹣abc=2021.∴abc=﹣2021.∴原式=c(ac+bc)﹣2020=c(﹣ab)﹣2020=﹣abc﹣2020=2021﹣2020=1.故选:B.【点睛】本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是解答本题的关键.二、填空题1、【解析】【分析】先提取公因式,再用完全平方公式分解即可.【详解】解:,=,=故答案为:.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解.2、a(3+a)(3﹣a)【解析】【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【详解】解:9a﹣,=a (9﹣),=a(3+a)(3﹣a).【点睛】本题考查了因式分解,熟练掌握先提后选用公式的解题思路是解题的关键.3、【解析】【分析】利用平方差公式,进行分解因式即可.【详解】﹣64====.【点睛】本题考查了因式分解,灵活运用平方差公式是解题的关键.4、m(m+1)(m-1)【解析】【分析】先提公因式,再用平方差公式法分解因式.【详解】故答案为m(m+1)(m-1).【点睛】本题考查了提公因式法和公式法分解因式,因式分解的步骤一般是:先考虑提公因式法,再考虑公式法,最后保证再也不能分解了.5、【解析】【分析】直接利用平方差公式()进行因式分解即可得.【详解】解:,故答案为:.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.三、解答题1、10【解析】【分析】把a3b+ab3分解为ab[(a+b)2-2ab],然后把a+b=-3,ab=2代入计算即可得出答案.【详解】解:∵a+b=-3,ab=2,∴a3b+ab3=ab(a2+b2)=ab[(a+b)2-2ab]=2×[(-3)2-2×2]=2×(9-4)=10.【点睛】本题考查了分解因式的应用,会把a3b+ab3分解为ab[(a+b)2-2ab]是解决问题的关键.2、【解析】【分析】先提取公因式,然后再利用完全平方公式进行分解因式即可.【详解】解:原式.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.3、 (1)7(2)是凹数,理由见解析(3)【解析】【分析】(1)根据提供的新定义运算法则进行运算即可;(2)根据凹数的定义进行判断即可;(3)由是凹数,结合已知条件可得 再求解 代入,从而可求解: 得到 结合为正整数,从而可得答案.(1)解:故答案为:7(2)解:因为的十位数字是3,而 所以是凹数.(3)解: 是凹数, 而 , 整理得: 即 解得: 为正整数,则或或 所以满足条件的所有三位自然数为:【点睛】本题考查的是新定义运算,有理数的混合运算,乘法分配律分应用,利用完全平方公式分解因式,非负数的性质,理解新定义,逐步运算得到解下一步的条件是解本题的关键.4、(1);(2)【解析】【分析】(1)把(3y-2)看作一个整体,然后利用平方差公式及完全平方公式进行求解即可;(2)先部分提公因式,然后再利用完全平方公式进行因式分解即可.【详解】解:(1)==;(2)==.【点睛】本题主要考查整式的混合运算及因式分解,熟练掌握乘法公式是解题的关键.5、(1);;1;(2);【解析】【分析】(1)根据c=a×b中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称a×b是c的最优分解,因此M(8)==,M(24)==,M[(c+1)2]= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1≤x≤y≤9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)==,M(33)=,所以所有“吉祥数”中M(d)的最大值为.【详解】解:(1)由题意得,M(8)==;M(24)==;M[(c+1)2]=;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,∵x,y都是自然数,且1≤x≤y≤9,∴满足条件的“吉祥数”有15、24、33∴M(15)=,M(24)==,M(33)=,∵>>,∴所有“吉祥数”中M(d)的最大值为.【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试一课一练,共16页。试卷主要包含了把分解因式的结果是.,下列因式分解正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共20页。试卷主要包含了把分解因式的结果是.,下列多项式不能因式分解的是等内容,欢迎下载使用。
这是一份2020-2021学年第十一章 因式分解综合与测试同步达标检测题,共16页。试卷主要包含了下列因式分解正确的是,下列各式中,正确的因式分解是等内容,欢迎下载使用。