![难点解析冀教版七年级数学下册第十一章 因式分解综合测试试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12719788/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版七年级数学下册第十一章 因式分解综合测试试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12719788/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版七年级数学下册第十一章 因式分解综合测试试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12719788/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中冀教版第十一章 因式分解综合与测试当堂检测题
展开
这是一份初中冀教版第十一章 因式分解综合与测试当堂检测题,共17页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知m=1﹣n,则m3+m2n+2mn+n2的值为( )A.﹣2 B.﹣1 C.1 D.22、若、、为一个三角形的三边长,则式子的值( )A.一定为正数 B.一定为负数 C.可能是正数,也可能是负数 D.可能为03、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.4、下列各式中,能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.﹣a2+b2 C.a2+(﹣b)2 D.a3﹣ab35、下列多项式中,能用完全平方公式分解因式的是( )A.a2+4 B.x2+6x+9 C.x2﹣2x﹣1 D.a2+ab+b26、下列等式中,从左往右的变形为因式分解的是( )A.a2﹣a﹣1=a(a﹣1﹣)B.(a﹣b)(a+b)=a2﹣b2C.m2﹣m﹣1=m(m﹣1)﹣1D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)7、下列各式能用完全平方公式进行分解因式的是( )A.x2+1 B.x2+2x﹣1 C.x2+3x+9 D.8、下列因式分解正确的是( )A. B.C. D.9、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.10、下列多项式中能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.x2+(﹣y)2C.(﹣x)2+(﹣y)2 D.﹣m2+1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式_______.2、把多项式分解因式结果是______.3、计算下列各题:(1)______; (2)______; (3)______; (4)______.4、把多项式a3﹣9ab2分解因式的结果是 _____.5、在实数范围内分解因式:x2﹣3xy﹣y2=___.三、解答题(5小题,每小题10分,共计50分)1、分解因式:2、因式分解:(x2+2x)2﹣7(x2+2x)﹣8.3、因式分解:(1)(2)4、阅读题在现今“互联网+”的时代,密码与我们的生活已经密切相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式x3﹣x2因式分解的结果为x2(x﹣1),当x=5时,x2=25,x﹣1=04,此时可以得到数字密码2504或0425;如多项式x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=10时,x﹣1=09,x+1=11,x+2=12,此时可以得到数字密码091112.(1)根据上述方法,当x=12,y=5时,求多项式x3﹣xy2分解因式后可以形成哪些数字密码;(写出三个)(2)若一个直角三角形的周长12,斜边长为5,其中两条直角边分别为x,y,求出一个由多项式x3y+xy3分解因式后得到密码;(只需一个即可)(3)若多项式x2+(m﹣3n)x﹣6n因式分解后,利用本题的方法,当x=25时可以得到一个密码2821,求m、n的值.5、分解因式(1)(x2﹣3)2﹣2(x2﹣3)+1;(2)m2(a﹣2)+(2﹣a). -参考答案-一、单选题1、C【解析】【分析】先化简代数式,再代入求值即可;【详解】∵m=1﹣n,∴m+n=1,∴m3+m2n+2mn+n2=m2(m+n)+2mn+n2=m2+2mn+n2=(m+n)2=12=1,故选:C.【点睛】本题主要考查了代数式求值,准确计算是解题的关键.2、B【解析】【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】解:原式=(a-c+b)(a-c-b),∵两边之和大于第三边,两边之差小于第三边,∴a-c+b>0,a-c-b<0,∵两数相乘,异号得负,∴代数式的值小于0.故选:B.【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.3、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.4、B【解析】【分析】能用平方差公式分解因式的式子必须是两项是平方项,符号为异号.【详解】解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;B、,能用平方差公式分解因式,故此选项正确;C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;D.提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误.故选B.【点睛】本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键.5、B【解析】【分析】根据完全平方公式分解因式法解答.【详解】解:x2+6x+9=(x+3)2.故选:B.【点睛】此题考查了利用完全平方公式分解因式,掌握该方法分解的多项式的特点:共三项,其中有两项为平方项,第三项为这两项底数的积的2倍.6、D【解析】【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.7、D【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【详解】解:A、x2+1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;C、x2+3x+9不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;D、,故选项正确;故选:D【点睛】本题考查了完全平方式的运用分解因式,关键是熟练掌握完全平方式的特点.8、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.10、D【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D.【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.二、填空题1、【解析】【分析】把原式化为,再利用完全平方公式分解因式即可.【详解】解: 故答案为:【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解本题的关键.2、【解析】【分析】利用平方差公式分解得到结果,即可做出判断.【详解】解:== 故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.3、 【解析】【分析】(1)根据同底数幂相乘运算法则计算即可;(2)根据积的乘方的运算法则计算即可;(3)根据幂的乘方的运算法则计算即可;(3)根据提取公因式法因式分解即可.【详解】解:(1); (2); (3); (4).故答案是:(1);(2);(3);(4).【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.4、a(a+3b)(a-3b)【解析】【分析】根据题意直接提取公因式a,再利用平方差公式分解因式得出答案.【详解】解:a3-9ab2=a(a2-9b2)=a(a+3b)(a-3b).故答案为:a(a+3b)(a-3b).【点睛】本题主要考查提取公因式法以及公式法分解因式,正确运用平方差公式分解因式是解题的关键.5、【解析】【分析】先利用配方法,再利用平方差公式即可得.【详解】解:===.故答案为:.【点睛】本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.三、解答题1、(a-3)2(a+3)2【解析】【分析】直接利用完全平方公式以及平方差公式分解因式得出答案.【详解】解:a4-18a2+81=(a2-9)2=(a-3)2(a+3)2.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.2、(x﹣2)(x+4)(x+1)2【解析】【分析】将x2+2x视为整体,利用十字相乘法因式分解,再结合因式分解与完全平方公式解题.【详解】解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.【点睛】本题考查因式分解,是重要考点,难度一般,掌握相关知识是解题关键.3、 (1)(2)-4(6a+b)( a+6b)【解析】【分析】(1)用因式分解法分解即可;(2)用平方差公式分解即可;(1)解:===;(2)解:===(5a-5b+7a+7b)(5a-5b-7a-7b)=(12a+2b)( -2a-12b)=-4(6a+b)( a+6b) .【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.4、 (1)120717;121707,171207.(2)1225(3)m=5,n=2【解析】【分析】(1)首先把x3-xy2分解因式,然后求出当x=12,y=5时,x-y、x+y的值各是多少,写出可以形成的三个数字密码即可.(2)由题意得:,求出xy的值是多少,再根据x3y+xy3=xy(x2+y2),求出可得的数字密码为多少即可.(3)首先根据密码为2821,可得:当x=25时,x2+(m﹣3n)x﹣6n=(x+3)(x-4),据此求出m、n的值各是多少即可.(1)x3-xy2=x(x-y)(x+y),当x=12,y=5时,x-y=07,x+y=17,可得数字密码是120717;也可以是121707,171207.(2)由题意得:,解得xy=12,而x3y+xy3=xy(x2+y2),∴可得数字密码为1225.(3)∵密码为2821,∴当x=25时,∴x2+(m﹣3n)x﹣6n=(x+3)(x-4),即:x2+(m-3n)x-6n=x2-x-12,∴,解得.【点睛】此题主要考查了因式分解的应用,以及用“因式分解”法产生的密码的方法,要熟练掌握.5、 (1)(x+2)2(x﹣2)2(2)(a﹣2)(m﹣1)(m+1)【解析】【分析】(1)把(a2﹣3)看作一个整体用完全平方公式因式分解,再用平方差公式因式分解;(2)先把m2(a﹣2)+(2﹣a)化为m2(a﹣2)﹣(a﹣2)的形式,然后提取公因式,再用平方差公式因式分解.(1)解:(1)(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣3﹣1)2=(x+2)2(x﹣2)2;(2)解:m2(a﹣2)+(2﹣a)=m2(a﹣2)﹣(a﹣2)=(a﹣2)(m2﹣1)=(a﹣2)(m﹣1)(m+1).【点睛】本题考查了因式分解,解题根据是熟练运用公式法和提取公因式法进行因式分解.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试练习题,共16页。试卷主要包含了如果x2+kx﹣10=,多项式分解因式的结果是,当n为自然数时,,对于有理数a,b,c,有等内容,欢迎下载使用。
这是一份初中冀教版第十一章 因式分解综合与测试综合训练题,共17页。试卷主要包含了下列运算错误的是,下列因式分解正确的是.,下列多项式中有因式x﹣1的是,若a,把代数式分解因式,正确的结果是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共20页。试卷主要包含了把分解因式的结果是.,下列多项式不能因式分解的是等内容,欢迎下载使用。