2020-2021学年第十一章 因式分解综合与测试同步达标检测题
展开冀教版七年级数学下册第十一章 因式分解专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列因式分解正确的是( )
A.a2+1=a(a+1) B.
C.a2+a﹣5=(a﹣2)(a+3)+1 D.
2、下列多项式不能用公式法因式分解的是( )
A.a2+4a+4 B.a2﹣a+1 C.﹣a2﹣9 D.a2﹣1
3、下列等式中,从左到右的变形是因式分解的是( )
A.m(a+b)=ma+mb B.x2+3x+2=(x+1)(x+2)
C.x2+xy﹣3=x(x+y)﹣3 D.
4、下列因式分解正确的是( )
A. B.
C. D.
5、下列等式中,从左往右的变形为因式分解的是( )
A.a2﹣a﹣1=a(a﹣1﹣)
B.(a﹣b)(a+b)=a2﹣b2
C.m2﹣m﹣1=m(m﹣1)﹣1
D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)
6、已知a2-2a-1=0,则a4-2a3-2a+1等于( )
A.0 B.1 C.2 D.3
7、下列因式分解正确的是( )
A. B.
C. D.
8、下列各式中,正确的因式分解是( )
A.
B.
C.
D.
9、下列各式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
10、下列运算错误的是( )
A. B. C. D.(a≠0)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:___.
2、分解因式_______.
3、已知x2+mx+16能用完全平方公式因式分解,则m的值为 ___.
4、计算:_________,_________,_________.分解因式:_________,_________,________.
5、(________)(________);
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
(1)
(2)
2、因式分解:(y2﹣y)2﹣14(y2﹣y)+24.
3、把下列各式分解因式:
(1)x2+3x﹣4;
(2)a3b﹣ab;
(3)3ax2﹣6axy+3ay2.
4、因式分解:
(1)4x4+4x3+x2;
(2)(2m+3)2﹣m2.
5、分解因式:
(1)
(2)
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据因式分解的定义严格判断即可.
【详解】
∵+1≠a(a+1)
∴A分解不正确;
∵,不是因式分解,
∴B不符合题意;
∵(a﹣2)(a+3)+1含有加法运算,
∴C不符合题意;
∵,
∴D分解正确;
故选D.
【点睛】
本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.
2、C
【解析】
【分析】
直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案.
【详解】
解:A中,故此选项不合题意;
B中,故此选项不合题意;
C中无法分解因式,故此选项符合题意;
D中,故此选项不合题意;
故选:C.
【点睛】
本题考查了利用乘法公式进行因式分解.解题的关键在于对完全平方公式和平方差公式的灵活运用.
3、B
【解析】
【分析】
将多项式写成几个整式的积的形式叫做因式分解,根据因式分解的定义依次判断.
【详解】
解:m(a+b)=ma+mb是整式乘法,故选项A不符合题意;
x2+3x+2=(x+1)(x+2)是因式分解,故选项B符合题意;
x2+xy﹣3=x(x+y)﹣3不是因式分解,故选项C不符合题意;
不是因式分解,故选项D不符合题意;
故选:B.
【点睛】
此题考查了因式分解的定义,熟记定义并正确理解是解题的关键.
4、D
【解析】
【分析】
各项分解得到结果,即可作出判断.
【详解】
解:A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、因式分解正确,符合题意,
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
5、D
【解析】
【分析】
把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.
【详解】
A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;
B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;
C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;
D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.
故选D.
【点睛】
本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.
6、C
【解析】
【分析】
由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.
【详解】
解:∵a2﹣2a﹣1=0,
∴a2﹣2a=1,
∴a4﹣2a3﹣2a+1
=a2(a2﹣2a)﹣2a+1
=a2﹣2a+1
=1+1
=2.
故选:C.
【点睛】
此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.
7、A
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.
【详解】
解:A、,选项说法正确,符合题意;
B、,选项说法错误,不符合题意;
C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;
D、,选项说法错误,不符合题意;
故选A.
【点睛】
本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.
8、B
【解析】
【分析】
直接利用公式法以及提取公因式法分解因式,进而判断得出答案.
【详解】
解:.,故此选项不合题意;
.,故此选项符合题意;
.,故此选项不合题意;
.,故此选项不合题意;
故选:.
【点睛】
本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.
9、D
【解析】
【分析】
根据因式分解是把一个多项式化为几个整式的积的形式逐项判断即可.
【详解】
解: A选项的右边不是积的形式,不是因式分解,故不符合题意;
B选项的右边不是积的形式,不是因式分解,故不符合题意;
C选项的右边不是积的形式,不是因式分解,故不符合题意;
D选项的右边是积的形式,是因式分解,故符合题意,
故选:D.
【点睛】
本题考查因式分解,熟知因式分解是把一个多项式化为几个整式的积的形式是解答的关键.
10、A
【解析】
【分析】
根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.
【详解】
解:A. ,故该选项错误,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. (a≠0),故该选项正确,不符合题意,
故选A.
【点睛】
本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.
二、填空题
1、##
【解析】
【分析】
先提取公因式5,后用和的完全平方公式即可.
【详解】
∵,
故答案为.
【点睛】
本题考查了因式分解,熟练掌握先提取公因式,后用公式的解题策略是解题的关键.
2、
【解析】
【分析】
把原式化为,再利用完全平方公式分解因式即可.
【详解】
解:
故答案为:
【点睛】
本题考查的是利用完全平方公式分解因式,掌握“”是解本题的关键.
3、
【解析】
【分析】
利用完全平方公式的结构特征判断,确定出m的值即可得到答案.
【详解】
解:∵要使得能用完全平方公式分解因式,
∴应满足,
∵,
∴,
故答案为:.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.
4、
【解析】
【分析】
根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可
【详解】
解:计算:,,.
分解因式:,,.
故答案为:;;;;;
【点睛】
本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键.
5、;;;;;
【解析】
【分析】
利用十字相乘法进行因式分解即可得.
【详解】
解:;
;
;
;
;
;
故答案为:;;;;;.
【点睛】
本题考查了利用十字相乘法进行因式分解,熟练掌握十字相乘法是解题关键.二次三项式,若存在 ,则.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)先提取公因式 再利用平方差公式分解因式即可;
(2)先计算整式的乘法运算,再利用完全平方公式分解因式即可.
【详解】
解:(1)
(2)
【点睛】
本题考查的是综合提公因式与公式法分解因式,掌握“利用平方差公式与完全平方公式分解因式”是解本题的关键.
2、(y﹣2)(y+1)(y﹣4)(y+3)
【解析】
【分析】
将看做整体,再十字相乘法因式分解,注意分解要彻底.
【详解】
原式=(y2﹣y﹣2)(y2﹣y﹣12)
=(y﹣2)(y+1)(y﹣4)(y+3).
【点睛】
本题考查了因式分解,掌握十字分解法是解题的关键.
3、 (1)(x+4)(x﹣1)
(2)ab(a+1)(a﹣1)
(3)3a(x﹣y)2
【解析】
【分析】
(1)利用十字相乘法进行分解即可;
(2)先提公因式,然后再利用平方差公式继续分解即可;
(3)先提公因式,然后再利用完全平方公式继续分解即可;
(1)
解:x2+3x﹣4=(x+4)(x﹣1);
(2)
解:a3b﹣ab
=ab(a2﹣1)
=ab(a+1)(a﹣1);
(3)
解:3ax2﹣6axy+3ay2
=3a(x2﹣2xy+y2)
=3a(x﹣y)2;
【点睛】
本题考查了因式分解﹣十字相乘法,提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.
4、 (1)
(2)
【解析】
【分析】
(1)先提取公因式,然后再运用完全平方公式法因式分解即可;
(2)运用平方差公式因式分解即可.
(1)
解:4x4+4x3+x2
= x2(4x2+4x+1)
=.
(2)
解:(2m+3)2﹣m2
=(2m+3+m)(2m+3-m)
=(3m+3)(m+3)
=.
【点睛】
本题主要考查了因式分解,掌握提取公因式法和公式法因式分解是解答本题的关键.
5、 (1)
(2)
【解析】
【分析】
(1)先提取公因式,再利用平方差公式因式分解;
(2)先利用平方差公式因式分解,再提取公因式因式分解.
(1)
解:;
(2)
解:.
【点睛】
本题考查了因式分解,解题的关键是掌握提取公因式及平方差公式.
冀教版七年级下册第十一章 因式分解综合与测试一课一练: 这是一份冀教版七年级下册第十一章 因式分解综合与测试一课一练,共16页。试卷主要包含了把分解因式的结果是.,下列因式分解正确的是等内容,欢迎下载使用。
冀教版七年级下册第十一章 因式分解综合与测试随堂练习题: 这是一份冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共20页。试卷主要包含了把分解因式的结果是.,下列多项式不能因式分解的是等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试精练: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试精练,共17页。试卷主要包含了把分解因式的结果是.等内容,欢迎下载使用。